Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
Ta nhận thấy các cặp số đều bằng 3/5 và các dấu cũng giống nhau. ( các số có cùng dấu thì phân số đó cũng cùng dấu.)
=> Phân số này sẽ bằng 3/5
\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\)
Ta nhận thấy các cặp số đều bằng -3/5 và các dấu thì trái nhau. ( các số có trái dấu thì phân số đó cũng trái dấu.)
=> Phân số này sẽ bằng -3/5.
Sau khi rút gọn bài toán sẽ thành:
\(\left(\frac{3}{5}-\frac{3}{5}\right)\div\frac{1890}{2005}+115=115\)
Câu b tạm thời mình chưa nghĩ ra. Chúc bạn học tốt.
a) \(A=\left(\frac{3}{5}-\frac{3}{5}\right):\frac{1890}{2005}+115\)
\(\Rightarrow A=115\)
b) \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+....+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2005}}\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\)
=1/2.2 +1/3.3 +1/4.4 +...........+ 1/2005.2005
=1-1/2+1/2-1/3+1/3-1/4+............+1/2004-1/2005
=1-1/2005<1
suy ra 1-1/2005<3/4
vậy..................
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(1+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+...+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2005}}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)
\(2B=1-\frac{1}{3^{2005}}\)
\(B=\frac{1-\frac{1}{3^{2005}}}{2}\)
\(B=\frac{1}{2}-\frac{1}{\frac{3^{2005}}{2}}\)
Vi \(\frac{1}{2}-\frac{1}{\frac{3^{2005}}{2}}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\left(dpcm\right)\)