Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}=\frac{\left(a+b+c+d-x\right)+\left(x-a\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}\)\(=\frac{\left(a+b+c+d-x\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{1}{\left(b-a\right)\left(c-a\right)\left(d-a\right)}\)
Áp dụng hoán vị vòng \(b\rightarrow c\rightarrow d\rightarrow a\rightarrow b\) vào VT , ta được :
\(\left(a+b+c+d-x\right)\)[\(\frac{1}{\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(a-x\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)\left(b-d\right)\left(b-x\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)\left(c-d\right)\left(c-x\right)}\)\(+\frac{1}{\left(d-a\right)\left(d-b\right)\left(d-c\right)\left(d-x\right)}\).
Quy đồng mẫu thức và tính toán biểu thức trong [ ] ta được :
\(\frac{-1}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}\)
Vậy ...............
áp dụng bất đẳng thức
A+B)2 >= 4AB
Ta có:
\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge4.\frac{a+b}{2}.\frac{c+d}{2}=\left(a+b\right)\left(c+d\right)\)
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)( luôn đúng )
Vậy ...
Đặt \(A=\frac{\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)
\(\Rightarrow16A=\frac{\left(a+b+c+d+e\right)^2\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)
Áp dụng AM-GM ta có:
\(\Rightarrow16A\ge\frac{4e\left(a+b+c+d\right)^2\left(a+b+c\right)\left(a+b\right)}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d\left(a+b+c\right)^2\left(a+b\right)}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d.4c\left(a+b\right)^2}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d.4c.4ab}{abcde}\)
\(\Rightarrow A\ge16\)
Dấu "=" xảy ra khi đồng thời:
\(\text{a+b+c+d+e=4, a+b+c+d=e, a+b+c=d, a+b=c, a=b}\)
\(\Rightarrow e=2,d=1,c=\frac{1}{2},a=\frac{1}{4},b=\frac{1}{4}\)