Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\Delta ABD=\Delta IBD\left(ch-gn\right)\Rightarrow AB=BI;AD=DI.\)
b)Xét \(\Delta ABH=\Delta IBH\left(c-g-c\right)\Rightarrow AHB=IHB=90^0\)
Suy ra \(AI\perp BD\)
c)XÉT \(\Delta ADK=\Delta IDC\left(cgv-gnk\right)\Rightarrow KB=DC\)
d) vì \(BD//EI\Rightarrow DBI=BIE;DBI=BEI\)
HAY \(BIE=BEI\Rightarrow\Delta BIE\)CÂN TẠI B
Xét tam giác ABD và tam giác HBD có:
BD: chung.
Góc BAD=BHD=90 độ.
Góc ABD=HBD(Phân giác BD)
=> Tam giác ABD=tam giác HBD(ch-gn)
b/ Gọi giao điểm của BD và AH là O.
Xét tam giác AOB và tam giác HOB có:
BO:chung.
Góc ABO=HBO(Phân giác BD)
BA-BH(cạnh tương ứng của tam giác BAD=BHD)
=>Tam giác AOB=tam giác HOB(c-g-c)
=> Góc AOB=HOB(góc tương ứng)=90 độ
Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)
=> AH//KC
Mà BD vuông góc với AH nên BD cũng vuông góc với KC.
c/Xét tam giác ADK và tam giác HDC có:
DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)
Góc DAK=DHC=90 độ.
Góc ADK=HDC(đối đỉnh)
=> tam giác ADK=tam giác HDC(g-c-g)
=> DK=DC(cạnh tương ứng)
Mà trong tam giác vuông HDC có:
DC là cạnh huyền nên DC>DH
=> DK>DH(đpcm)
=> tự vẽ hình nha .
a) Xét hai tam giác vuông: ∆ABD và ∆IBD có:
BD chung
∠ABD = ∠IBD (gt)
⇒ ∆ABD = ∆IBD (cạnh huyền - góc nhọn)
b) Do ∆ABD = ∆IBD (cmt)
⇒ AD = ID (hai cạnh tương ứng)
∆DIC vuông tại I
⇒ DC là cạnh huyền
⇒ ID < DC
Mà AD = ID (cmt)
⇒ AD < DC
c) Xét hai tam giác vuông: ∆DAK và ∆DIC có:
AD = ID (cmt)
∠ADK = ∠IDC (đối đỉnh)
⇒ ∆DAK = ∆DIC (cạnh góc vuông - góc nhọn kề)
⇒ DK = DC (hai cạnh tương ứng)
d) Do ∆DAK = ∆DIC (cmt)
⇒ AK = IC (hai cạnh tương ứng)
Do ∆ABD = ∆IBD (cmt)
⇒ AB = IB (hai cạnh tương ứng)
∆ABI cân tại B
⇒ ∠BAI = ∠BIA = (180⁰ - ∠ABC)/2 (1)
Do AB = IB (cmt)
AK = IC (cmt)
⇒ BK = BC
⇒ ∆BCK cân tại B
⇒ ∠BKC = ∠BCK = (180⁰ - ∠ABC)/2 (2)
Từ (1) và (2) ⇒ ∠BAI = ∠BKC
Mà ∠BAI và ∠BKC là hai góc đồng vị
⇒ AI // KC
cảm ơn ạ:>