K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

https://olm.vn/hoi-dap/detail/48946023107.html              vào trang đó coi rồi

ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab

tương tự a^2 + c^2 =b^2-2ac

               b^2 + c^2 =a^2-2bc

thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )

31 tháng 7 2019

  ta có:a^3+b^3+c^3=3abc 
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0 
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b... 
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0 
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]... 
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)

lộn nha không phải cái trang đó đâu cái này này 

8 tháng 3 2017

GT không hợp lí 

Theo định lí cosi 3 số

a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)

<=> a^3+b^3+c^3>=3abc

dấu"=" khi a=b=c

trái Gt a,b,c đôi một khác nhau

12 tháng 3 2017

Bạn sai rồi. Sao ngu vậy. Giải đến thế mà ko làm ra

16 tháng 10 2020

a, b, c đôi một khác nhau => a ≠ b ≠ c

a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

I) \(a+b+c=0\Rightarrow\hept{\begin{cases}-a=b+c\\-b=a+c\\-c=a+b\end{cases}}\)

Xét các mẫu thức ta có :

1) a2 + b2 - c2 = a2 + ( b - c )( b + c ) = a2 - a( b + c ) = a2 - ab + ac = a( a - b + c ) = a( a + b + c - 2b ) = -2ab

TT : b2 + c2 - a2 = -2bc

       c2 + a2 - b2 = -2ac

Thế vô A ta được :

\(A=\frac{-1}{2ab}+\frac{-1}{2bc}+\frac{-1}{2ac}=\frac{-c}{2abc}+\frac{-a}{2abc}+\frac{-b}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\)

II) a2 + b2 + c2 - ab - ac - ab = 0

<=> 2(a2 + b2 + c2 - ab - ac - ab) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2ab = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)( trái với đề bài )

=> A = 0

22 tháng 7 2020

2, (trích đề thi học sinh giỏi Bến Tre-1993)

\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0 

=> đpcm

*bài này tui làm tắt, không hiểu ib 

Vừa lm xog bị troll chứ, tuk quá 

\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)

\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)

Khử mẫu : 

\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)

Tự xử nốt, lm bài này muốn phát điên mất. 

3 tháng 12 2019

Ta có: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)

\(\Rightarrow\frac{a}{b-c}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{b-c}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)

Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ab}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+bc}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)

Cộng các đẳng thức trên ta được:

\(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)\(\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Vậy \(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)0 (đpcm)

22 tháng 10 2019

Câu hỏi của Jungkookie - Toán lớp 7 - Học toán với OnlineMath

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

1 tháng 12 2016

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)

\(\Leftrightarrow x+y+z=0\)

Ta có 

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

=> ĐPCM

1 tháng 12 2016

Mạnh Hùng hỏi được rồi á