Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
A=1+3+32+33+34+35+36
=> 3A=3+32+33+34+35+36+37
=> 3A-A=(3+32+33+34+35+36+37)-(1+3+32+33+34+35+36)
=> 2A=37-1
=> A=37-1/2
Vì (37-1)/2 < 37-1
=> A < B
b, C=1+2+22+...+22001+22002
=> 2C=2+22+23+....+22002+22003
=> 2C-C=(2+22+23+...+22002+22003)-(1+2+22+...+22002)
=> C=22003-1
Vì 22003-1 = 22003-1
=> C = D.
a) \(A=1+3+3^2+...+3^6\)
\(\Rightarrow3A=3+3^2+...+3^7\)
\(\Rightarrow3A-A=3+3^2+...+3^7-1-3-3^2-...-3^6\)
\(\Rightarrow2A=3^7+2\)
\(\Rightarrow A=\frac{3^7+2}{2}\)
Vì \(3^7-1>\frac{3^7+2}{2}\)=> A < B.
b) Câu này thì nhân C cho 2 và làm tương tự như câu trên nha.
a ) Ta có:
A = 1 + 3 + 32 + 33+ ..... + 36
A x 3 = 3 + 32 + 33 + 34 + .... + 37
A x 2 - A = ( 3 + 32 + 33 + 34 + .... + 37 ) - ( 1 + 3 + 32 + 33 + .... + 36 )
A = 37 - 1
Mà : B = 37 - 1 nên A = B
b ) Ta có :
C = 1 + 2 + 22 + 23 + ...... + 22002
C x 2 = 2 + 22 + 23 + 24 + ..... + 22003
C x 2 - C = ( 2 + 22 + 23 + 24 + ...... + 22003 ) - ( 1 + 2 + 22 + 23 + ..... + 22002 )
C = 22003 - 1
Mà : D = 22003 - 1 nên C = D
A=1+3+3^2+....+3^100
\Rightarrow 3A=3+ + +...+
\Rightarrow3A-A=2A=(3+ + + )-(1+3+ +....+ )
= -1
\RightarrowA=( -1):2
A = 1 + 2 + 2² + ... + 2^2002
A = 1 + (2 + 2² + ... + 2^2002 )
Ta xét :
u1 = 2
u2 = 2.2 = 22
u3 = 2.22 = 2^3
u2002 = 2.2^2001 = 2^2002
Tổng cấp số nhân : S = u1.(1 - q^n) / (1 - q) = 2.(1 - 2^2002) / (1 - 2) = 2(2^2002 - 1) = 2^2003 - 2
A = 1 + 2^2003 - 2 = 2^2003 - 1
So sánh với B
2^2003 - 1 = 2^2003 - 1
Vậy B = A