Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tao có:
2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)
2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)
2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)
2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)
2p=1/1.2-1/(n+1).(n+2)
2p=(n+!).(n+2)-2/(2n+2).(n+2)
suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)
2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50
2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49
2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50
2s=1/1.2-1/49.50
'2s=1/2-1/2450
2s=1225/2450-1/2450
2s=1224/2450
s=612/1225
\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1
\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)
S cx tinh giong v
2P=2/1.2.3+2/2.3.4+2/3.4.5+2/10.11.12
2P=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+.....+1/10.11-1/11.12
2P=1/1.2-1/11.12
2P=1/2-1/132
2P=66/132-1/132
2P=65/132
P=65/264
\(P=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
\(P=\dfrac{1}{2}-\dfrac{1}{11.12}\)
\(P=\dfrac{65}{132}\)
= 1 . 1/2 . 1/3 + 1/2 . 1/3 . 1/4 + ... + 1/37 . 1/38 . 1/39
= 1 . 1/39
= 1/39
Mong moi nguoi chi them03
1/1.2.3 + 1/2.3.4 +....+1/98.99.100
= 1/2 . (3-1/1.2.3 + 4-2/2.3.4 +....+ 100-98/98.99.100)
= 1/2 . (3/1.2.3 -1/1.2.3 + 4/2.3.4 - 2/2.3.4 +.......+ 100/98.99.100 - 98/98.99.100)
= 1/2 . (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +......+ 1/98.99 - 1/99.100)
= 1/2 . (1/2 - 1/9900)
= 1/2 . 4949/9900
= 4949/19800
Ta có
1/(1.2.3) = 1/2.(1/(1.2) - 1/(2.3))
1/(2.3.4) = 1/2.(1/(2.3) - 1/(3.4))
1/(3.4.5) = 1/2.(1/(3.4) - 1/(4.5))
.........
.........
1/( 37.38.39) = 1/2.((1/(37.38) - 1/(38.39))
Cộng vế với vế các đẳng thức trên ta được.
1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + ......1/(37.38) - 1/(38.39)
=> 1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(38.39)) = 185/74
Đ/S:tích
Ta có
1/(1.2.3) = 1/2.(1/(1.2) - 1/(2.3))
1/(2.3.4) = 1/2.(1/(2.3) - 1/(3.4))
1/(3.4.5) = 1/2.(1/(3.4) - 1/(4.5))
.........
.........
1/( 37.38.39) = 1/2.((1/(37.38) - 1/(38.39))
Cộng vế với vế các đẳng thức trên ta được.
1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + ......1/(37.38) - 1/(38.39)
=> 1/( 1.2.3) + 1/ ( 2.3.4) + 1/(3.4.5) +...........+ 1/( 37.38.39) = 1/2.( 1/(1.2) - 1/(38.39)) = 185/74
2A = [1/1.2-1/2.3]+[1/2.3-1/3.4]+...+[1/2014.2015-1/2015.2016]
2A = 1/1.2-1/2.3+1/2.3-1/3.4+...+1/2014.2015-1/2015.2016
2A = 1/1-1/2015.2016
2A = 2015.2016-1/2015.2016
A = \(\frac{\left[2015.2016-1\right]:2}{2015.2016}=0.4999998769\)
ban ơi.Số́ hơi to thì phả̉i