Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\text{VT}=\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\)
\(=\frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}=\frac{ab+bc+ac+a+b+c}{abc+(ab+bc+ac)+(a+b+c)+1}\)
\(=\frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\)
Ta cần chứng minh \(\text{VT}\geq \frac{3}{4}\)
\(\Leftrightarrow \frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\geq \frac{3}{4}\)
\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3(ab+bc+ac+a+b+c)+6\)
\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\)
\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\sqrt[6]{ab.bc.ac.a.b.c}\)
(Đúng theo BĐT Cô-si)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\)
Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)
\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cộng vế với vế:
\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)
Lại có:
\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)
\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)
Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)
\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)
Cộng vế:
\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)
Giải:
\(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)(*)
\(\Leftrightarrow\) \(\dfrac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\) \(\dfrac{ac+a+ab+b+bc+c}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\) \(\ge\) \(\dfrac{3}{4}\)
Do a+1 ; b+1; c+1 >0
\(\Rightarrow\) 4ac+4a+4ab+4b+4bc+4c \(\ge\) 3abc+3ac+3bc+3ab+3a+3b+3c+3
\(\Leftrightarrow\) ac+ab+bc+a+b+c -6 \(\ge\) 0
Áp dụng BĐT Cô-si cho 3 số
Ta có: a+b+c \(\ge\) \(3\sqrt[3]{abc}=3\)
ab+bc+ca \(\ge\) \(3\sqrt[3]{\left(abc\right)^2}\) = 3
\(\Rightarrow\)ac+ab+bc+a+b+c -6 \(\ge\) 0 ( luôn đúng)
\(\Rightarrow\) (*) được chứng minh
Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c=1
điện thoại cùi nên chụp hơi mờ, đề này còn thiếu a,,bc>0
Bài 1 : Áp dụng BĐT trong tam giác ta có :
\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b-c+a\right)\left(b+c-a\right)\le b^2\\\left(c-a+b\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)
Nhân từng vế BĐT ta được :
\(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\) ( đpcm )
Bài 2 : Theo BĐT Cô - si ta có :
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge abc\) (1)
Theo câu 1 ta lại có :
\(abc\ge\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
\(\Leftrightarrow abc\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\)
@Akai Haruma