K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

Giả sử \(y\) nằm giữa \(x\) và \(z\)

\(\Rightarrow\left(y-z\right)\left(y-x\right)\le0\)

\(\Leftrightarrow y^2+zx\le xy+zx\)

\(\Leftrightarrow y^2z+z^2x\le xyz+z^2x\)

\(\Leftrightarrow x^2y+y^2z+z^2x\le x^2y+xyz+z^2x=y.\left(x^2+zx+z^2\right)\)

Nên : \(P\le y.\left(x^2+zx+z^2\right)\le y.\left(x+z\right)^2\)

\(=\frac{1}{2}.2y.\left(x+z\right).\left(x+z\right)\le\frac{1}{2}.\left[\frac{2y+x+z+x+z}{3}\right]^3\) \(=\frac{1}{2}\cdot\frac{8}{27}=\frac{4}{27}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0,y=\frac{1}{3},z=\frac{2}{3}\)  và các hoán vị.

NV
8 tháng 3 2021

Ta sẽ chứng minh \(P_{min}=1\)

TH1: \(xyz=0\)

\(\Rightarrow x^2y^2z^2=0\Rightarrow x^4+y^4+z^4=1\)

\(P=x^2+y^2+z^2\ge\sqrt{x^4+y^4+z^4}=1\)

TH2: \(xyz\ne0\) , từ điều kiện, tồn tại 1 tam giác nhọn ABC sao cho \(\left\{{}\begin{matrix}x^2=cosA\\y^2=cosB\\z^2=cosC\end{matrix}\right.\)

\(P=cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\)

Ta sẽ chứng minh \(cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\ge1\)

\(\Leftrightarrow4sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}\ge\sqrt{2cosA.cosB.cosC}\)

\(\Leftrightarrow8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}\ge cosA.cosB.cosC\)

\(\Leftrightarrow\dfrac{8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}}{8sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}cos\dfrac{A}{2}cos\dfrac{B}{2}cos\dfrac{C}{2}}\ge cotA.cotB.cotC\)

\(\Leftrightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\ge cotA.cotB.cotC\)

\(\Leftrightarrow tanA.tanB.tanC\ge cot\dfrac{A}{2}cot\dfrac{B}{2}cot\dfrac{C}{2}\)

\(\Leftrightarrow tanA+tanB+tanC\ge cot\dfrac{A}{2}+cot\dfrac{B}{2}+cot\dfrac{C}{2}\)

Ta có:

\(tanA+tanB=\dfrac{sin\left(A+B\right)}{cosA.cosB}=\dfrac{2sinC}{cos\left(A-B\right)-cosC}\ge\dfrac{2sinC}{1-cosC}=\dfrac{2sin\dfrac{C}{2}cos\dfrac{C}{2}}{2sin^2\dfrac{C}{2}}=cot\dfrac{C}{2}\)

Tương tự: \(tanA+tanC\ge cot\dfrac{B}{2}\) ; \(tanB+tanC\ge cot\dfrac{A}{2}\)

Cộng vế với vế ta có đpcm

Vậy \(P_{min}=1\) khi \(\left(x^2;y^2;z^2\right)=\left(1;0;0\right)\) và các hoán vị hoặc \(\left(x^2;y^2;z^2\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

7 tháng 3 2021

TH1: Nếu có 1 số bằng 0, giả sử là z, khi đó ta có \(x^4+y^4=1\)

và \(P=x^2+y^2\ge\sqrt{x^4+y^4}=1\)

Dấu '=' xảy ra khi 1 số =0, một số = \(\pm1\)

TH2: Nếu các số đều khác 0

Từ giả thiết => tồn tại tam giác ABC nhọn sao cho

\(x^2=\cos A,y^2=\cos B,z^2=\cos C\)

\(P=\cos A+\cos B+\cos C-\sqrt{2\cos A\cos B\cos C}\)

\(=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}-\sqrt{2\cos A\cos B\cos C}\)

Ta chứng minh \(4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\ge\sqrt{2\cos A\cos B\cos C}\)  (1)

Ta có (1) \(\Leftrightarrow8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}\ge\cos A\cos B\cos C\)

\(\Leftrightarrow\frac{8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}}{\sin A\sin B\sin C}\ge\frac{\cos A\cos B\cos C}{\sin A\sin B\sin C}\)

\(\Leftrightarrow\cot A\cot B\cot C\le\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}\)

\(\Leftrightarrow\tan A\tan B\tan C\ge\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}\)

\(\Leftrightarrow\tan A+\tan B+\tan C\ge\cot\frac{A}{2}+\cot\frac{B}{2}+\cot\frac{C}{2}\)  (2)

bđt (2) đúng vì \(\tan A+\tan B\ge2\cot\frac{C}{2}\)  và 2 bđt tương tự

Dấu '=' xảy ra khi tam giác đều \(\Leftrightarrow x^2=y^2=z^2=\frac{1}{2}\)

\(\Rightarrow P\ge1\)

Dấu '=' xảy ra khi 2 số =0, một số \(=\pm1\)  hoặc \(x^2=y^2=z^2=\frac{1}{2}\)

Vậy GTNN của P là 1

18 tháng 8 2019

Anh/ chị viết rõ đề bằng công thức toán được không ạ?

Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?

\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?

20 tháng 8 2019

9/4...... p ko????

NV
15 tháng 3 2022

\(1=2\sqrt{xy}+\sqrt{xz}\le x+y+\dfrac{1}{2}\left(x+z\right)=\dfrac{1}{2}\left(3x+2y+z\right)\)

\(\Rightarrow3x+2y+z\ge2\)

BĐT cần chứng minh tương đương:

\(\dfrac{5xy}{z}+\dfrac{4xz}{y}+\dfrac{3yz}{x}\ge4\)

Ta có:

\(VT=3\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)

\(VT\ge3.2\sqrt{\dfrac{x^2yz}{yz}}+2.2\sqrt{\dfrac{xy^2z}{xz}}+2\sqrt{\dfrac{xyz^2}{xy}}=2\left(3x+2y+z\right)\ge2.2=4\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

16 tháng 3 2022

Dạ em cảm ơn.