Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+2\left(\dfrac{xy}{\sqrt{yz}}+\dfrac{yz}{\sqrt{xz}}+\dfrac{xz}{\sqrt{xy}}\right)\)
Áp dụng BĐT cosi:
\(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}=4x\)
\(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{xz}}+\dfrac{yz}{\sqrt{xz}}+x\ge4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}=4y\)
\(\dfrac{z^2}{x}+\dfrac{xz}{\sqrt{xy}}+\dfrac{xz}{\sqrt{xy}}+y\ge4\sqrt[4]{\dfrac{z^4x^2y}{x^2z}}=4z\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow A^2+\left(x+y+z\right)\ge4\left(x+y+z\right)\\ \Leftrightarrow A^2\ge3\left(x+y+z\right)\ge3\cdot12=36\\ \Leftrightarrow A\ge6\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{12}{3}=4\)
Ta có: \(x+y+z=1\Rightarrow\hept{\begin{cases}\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\\\sqrt{y+xz}=\sqrt{y\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(y+z\right)}\\\sqrt{z+xy}=\sqrt{z\left(x+y+z\right)+xy}=\sqrt{\left(x+z\right)\left(y+z\right)}\end{cases}}\)
Ta viết lại A
\(A=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(y+z\right)\left(x+z\right)}\)
Áp dụng bđt AM-GM:
\(A\le\frac{x+y+x+z+x+y+y+z+y+z+x+z}{2}=2\)
\("="\Leftrightarrow x=y=z=\frac{1}{3}\)
\(x+yz=x\left(x+y+z\right)+yz\)
\(=x^2+xy+xz+yz\)
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)
+ Tương tự : \(y+xz=\left(x+y\right)\left(y+z\right)\)
\(z+xy=\left(x+z\right)\left(y+z\right)\)
+ Theo bđt AM-GM : \(\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{x+y+x+z}{2}\)
\(\Rightarrow\sqrt{\left(x-1\right)\left(y-1\right)}\le\frac{2x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=x+z\Leftrightarrow y=z\)
+ Tương tự ta cm đc :
\(\sqrt{\left(x+y\right)\left(y+z\right)}\le\frac{x+2y+z}{2}\). Dấu "=" xảy ra \(\Leftrightarrow x=z\)
\(\sqrt{\left(x+z\right)\left(y+z\right)}\le\frac{x+y+2z}{2}\). Dấu "=" xảy ra \(\Leftrightarrow x=y\)
Do đó : \(A\le\frac{4\left(x+y+z\right)}{2}=2\)
A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)
Vậy Max A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)
áp dụng bunhiacopski ta có:
P^2 =< (1+1+1)(1/1+x^2 + 1/1+y^2+1/1+z^2)= 3(....)
đặt (...) =A
ta có: 1/1+x^2=< 1/2x
tt với 2 cái kia
=> A=< 1/2(1/x+1/y+1/z) =<1/2 ( xy+yz+xz / xyz)=1/2 ..........
đoạn sau chj chịu
^^ sorry
Bài này là câu lớp 8 rất quen thuộc rùiiiiiii !!!!!!!!
gt <=> \(\frac{x+y+z}{xyz}=1\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
=> \(ab+bc+ca=1\)
VÀ: \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)
THAY VÀO P TA ĐƯỢC:
\(P=\frac{1}{\sqrt{1+\frac{1}{a^2}}}+\frac{1}{\sqrt{1+\frac{1}{b^2}}}+\frac{1}{\sqrt{1+\frac{1}{c^2}}}\)
=> \(P=\frac{1}{\sqrt{\frac{a^2+1}{a^2}}}+\frac{1}{\sqrt{\frac{b^2+1}{b^2}}}+\frac{1}{\sqrt{\frac{c^2+1}{c^2}}}\)
=> \(P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
Thay \(1=ab+bc+ca\) vào P ta sẽ được:
=> \(P=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
=> \(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
=> \(2P=2.\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+c}}+2.\sqrt{\frac{b}{b+a}}.\sqrt{\frac{b}{b+c}}+2.\sqrt{\frac{c}{c+a}}.\sqrt{\frac{c}{c+b}}\)
TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:
=> \(2P\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\)
=> \(2P\le\left(\frac{a}{a+b}+\frac{b}{b+a}\right)+\left(\frac{b}{b+c}+\frac{c}{c+b}\right)+\left(\frac{c}{c+a}+\frac{a}{a+c}\right)\)
=> \(2P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\)
=> \(2P\le1+1+1=3\)
=> \(P\le\frac{3}{2}\)
DẤU "=" XẢY RA <=> \(a=b=c\) . MÀ \(ab+bc+ca=1\)
=> \(a=b=c=\sqrt{\frac{1}{3}}\)
=> \(x=y=z=\sqrt{3}\)
VẬY P MAX \(=\frac{3}{2}\) <=> \(x=y=z=\sqrt{3}\)
Ta có: \(\sqrt{x^2+xy+y^2}=\sqrt{x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}}=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}\)
Tương tự ta viết lại A và áp dụng BĐT Mipcopxki :
\(A=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(z+\frac{x}{2}\right)^2+\frac{3x^2}{4}}\)
\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}\right)^2}\)
\(\ge\sqrt{\left(\frac{3\left(x+y+z\right)}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)
\(\ge\sqrt{\left(\frac{3\cdot3}{2}\right)^2+\left(\frac{\sqrt{3}\cdot3}{2}\right)^2}=\sqrt{27}\)
Xảy ra khi x=y=z=1
Cho x,y,z là các số dương thỏa mãn x+y+z=1. Tìm GTLN của P = \(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\)
\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)
\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)
\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)
\(P\le2\left(x+y+z\right)=2\)
\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)
thanh niên này chắc VIP dài quá:))
** Max
\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)
Theo bunhia ta có:
\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)
*** Min
Giả sử \(1\ge y\ge x\ge z\)
Ta có:
\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Mặt khác:
\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)
Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)
Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)
Khi đó
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.
Em có cách này cho phần min nhưng không chắc lắm..
Min:
Giả sử \(x\ge y\ge z\)
\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)
\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)
\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.