Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)
\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)
\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)
\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)
\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)
\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)
\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)
\(\ge6\left(x+y+z+3\right)^2\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Lời giải:
Khai triển:
\(\text{VT}=5(x^5+y^5+z^5)+5\underbrace{[x^3(y^2+z^2)+y^3(x^2+z^2)+z^3(x^2+y^2)]}_{M}\)
Xét riêng $M$ kết hợp với điều kiện $x+y+z=0$ ta có
\(M=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(x+z)=-(x^2y^2z+y^2z^2x+z^2x^2y)\)
\(\Leftrightarrow M=-xyz(xy+yz+xz)=\frac{-1}{2}xyz[(x+y+z)^2-(x^2+y^2+z^2)]=\frac{1}{2}xyz(x^2+y^2+z^2)\)
Ta biết đến một hằng thức rất quen thuộc: Nếu $x+y+z=0$ thì \(x^3+y^3+z^3=3xyz\)
Cách chứng minh: \(x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=0-3(-x)(-y)(-z)=3xyz\)
Do đó \(M=\frac{1}{6}(x^3+y^3+z^3)(x^2+y^2+z^2)=\frac{\text{VT}}{30}\)
\(\Rightarrow \text{VT}=5(x^5+y^5+z^5)+5M=5(x^5+y^5+z^5)+\frac{\text{VT}}{6}\)
\(\Rightarrow \text{VT}=6(x^5+y^5+z^5)\) (đpcm)
b) Theo phần a)
\(\left\{\begin{matrix} M=\frac{1}{2}xyz(x^2+y^2+z^2)\\ M=\frac{5(x^2+y^2+z^2)(x^3+y^3+z^3)}{30}\end{matrix}\right.\Rightarrow \frac{5(x^2+y^2+z^2)(x^3+y^3+z^3)}{30}=\frac{xyz(x^2+y^2+z^2)}{2}\)
Mà \(5(x^2+y^2+z^2)(x^3+y^3+z^3)=6(x^5+y^5+z^5)\Rightarrow \frac{6(x^5+y^5+z^5)}{30}=\frac{xyz(x^2+y^2+z^2)}{2}\)
\(\Leftrightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\) (đpcm)
b)Vì x+y+z=0
=>x+y=-z =>(x+y)^5=-z^5
hay x^5+y^5+5(x^4y+xy^4+2x³y²+2x²y³+)=-z^5
<=>x^5+y^5+z^5+5xy(x³+y³+2x²y+2x²y)=0
<=>x5+y^5+z^5+5xy(x+y)(x²-xy+y²+2xy)=0
<=>x^5+y^5+z^5-5xyz(x²+xy+y²)=0
<=>x^5+y^5+z^5=5xyz(x²+xy+y²)
<=>2(x^5+y^5+z^5)=5xyz(2x²+2xy+2y²)
<=>2(x^5+y^5+z^5)=5xyz[x²+y²+(x+y)²]
<=>2(x^5+y^5+z^5)=5xyz(x³+y²+z²)
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
Xét các biểu thức :
\(x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)\left(-3xy\right)=-3xy.\left(-z\right)=3xyz\)
\(x^2+y^2+z^2=x^2+y^2+\left(-x-y\right)^2=2\left(x^2+y^2+xy\right)\)
Do đó VT có giá trị là \(5.\left(3xyz\right).2\left(x^2+y^2+xy\right)=30xyz\left(x^2+y^2+xy\right)\)
Xét VP:
\(x^5+y^5+z^5=\left(x^5+y^5\right)+\left(-x-y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy.\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+2xy+y^2-xy\right)\)
\(=5xyz\left(x^2+xy+y^2\right)\)
Do đó VP là \(30xyz\left(x^2+y^2+xy\right)\)
Suy ra điều phải chứng minh.
x + y + z = 0
⇒x3+y3+z3=3xyz⇒x3+y3+z3=3xyz
⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)
⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)
⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)
⇒2(x5+y5+z5)=5xyz(x2+y2+z2)