Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=-\frac{1}{z^3}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-3\cdot\frac{1}{xy}\cdot\left(-\frac{1}{z}\right)=\frac{3}{xyz}\)
Khi đó có : \(P=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)
GT \(\Leftrightarrow xy+yz+zx=0\). Khi đó: \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3.xy.yz.zx=3x^2y^2z^2\).
Do đó: \(P=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}=3\)
1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0
\(N=\frac{\left(yz\right)^3+\left(zx\right)^3+\left(xy\right)^3}{x^2y^2z^2}\)
Nếu a + b +c = 0 thì
a ^3 + b ^3 + c^ 3 = 3abc
thật vậy a ^3 + b ^3 + c^ 3 = ( a + b + c) ^3 - 3(a + b)(b + c)(c + a) = - 3(-c)(-a)(-b) = 3abc
Do đó 3.x^2.y^2.z^2/x^2.y^2.z^2=3
Câu 1
X^3+Y3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2 -xy-yz-zx) =0. Nên chỉ có 2 TH
a) TH1: x+y+z = 0 --> x+y=-z; y+z=-x; z+x=-y (1):
Biến đổi P= (x+y)(y+z)(z+x)/xyz (2). Thay (1) vào (2) được P = -xyz/xyz = -1
b) TH2: x^2+y^2+z^2 -xy-yz-zx --> x=y=z. Thay vào biểu thức của P được P = (1+1)(1+1)(1+1)=8
Câu 3
x^2+y^2 >= 2xy
y^2+z^2 >= 2yz
z^2+x^2>=2xz
Cộng 2 vế với vế cuae 3 BDT trên được 2(x^2+y^2+x^2)>=2(xy+yz+zx) --> x^2+y^2+x^2>= xy+yz+zx (1) Dấu = xảy ra khi x=y=z
Mặt khác A=(x+y+z)^2=x^2+y^2+x^2+2(xy+yz+zx)=9. Theo (1) A>=xy+yz+zx+2(xy+yz+zx) = 3(xy+yz+zx)
nên 9>=3(xy+yz+zx) --> 3>=xy+yz+zx. Vậy giá trị lớn nhất của P là 9. Khi đó x=y=z=1
Cho L-I-K-E N-H-A+....
+Cộng 1 vào 2 vế của 3 pt ta được:
(x+1)(y+1)=2
(y+1)(z+1)=4
(z+1)(x+1)=8
Nhân hết 2 phương trình bất kỳ rồi chia cho cái còn lại ta được:
\(\left(x+1\right)^2=\dfrac{2.8}{4}=4\);\(\left(y+1\right)^2=\dfrac{2.4}{8}=1\);\(\left(z+1\right)^2=\dfrac{4.8}{2}=16\)
Do x;y;z không âm nên x= 1; y= 0; z= 3
\(=>A=1+0+3=4\)