K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

Áp dụng BĐT BSC và BĐT Cosi:

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)

\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)

\(=35\)

\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

28 tháng 8 2021

Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)

\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )

Dấu "=" xảy ra <=> x=y=z=1/3

28 tháng 8 2021

Dễ thì giải đi bn

28 tháng 8 2021

mik tik rồi đó

31 tháng 12 2015

là câu hỏi tương tự nha bạn

9 tháng 1 2020

We have:

\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)

Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)

Dau '=' xay ra khi \(x=y=z=1\)