K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 5 2020

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Dấu "=" xảy ra khi \(x=y=z\)

Hoặc:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2\left(y+z\right)}{4\left(y+z\right)}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vế với vế ta có đpcm

24 tháng 12 2017
ghhjkkkk
1 tháng 11 2016

ngu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleuchó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa

4 tháng 11 2016

im mồm hiu

23 tháng 2 2019

\(taco:\)

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{2}\ge3\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge3\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=\frac{3}{2}\)

\(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(dpcm\right)\)

^^

23 tháng 2 2019

Mình giải lại bài này cho đầy đủ hơn nhé: (nãy chỉ là hướng dẫn thôi)

Ta sẽ c/m: \(\frac{1}{x^2+x}\ge-\frac{3}{4}x+\frac{5}{4}\) (1).Thật vậy,xét hiệu hai vế,ta có:

\(VT-VP=\frac{\left(3x+4\right)\left(x-1\right)^2}{4\left(x^2+x\right)}\ge0\)

Suy ra \(VT\ge VP\).Vậy (1) đúng.

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT\ge-\frac{3}{4}\left(x+y+z\right)+\frac{5}{4}.3=\frac{3}{2}^{\left(đpcm\right)}\)

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

2 tháng 5 2016

ta có \(\frac{1}{x^2+x}+\frac{x^2+x}{4}>=2\cdot\sqrt{\frac{1\cdot\left(x^2+x\right)}{\left(x^2+x\right)\cdot4}}=1\)

tương tự => \(\frac{1}{y^2+y}+\frac{y^2+y}{4}>=1;\frac{1}{z^2+z}+\frac{z^2+z}{4}>=1\)

=> VT >= 3-(\(\frac{x^2+x}{4}+\frac{y^2+y}{4}+\frac{z^2+z}{4}\))=3-\(\frac{x^2+y^2+z^2+3}{4}\)

mà \(\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}>=\frac{\left(x+y+z\right)^2}{4+4+4}=\frac{3}{4}\)

=> P>= 3-3/4-3/4=3/2

Dấu bằng khi x=y=z=1

3 tháng 5 2016

Bài bạn Lương Ngọc Anh bị ngược dấu nên sai hoàn toàn. Lời giải:

Ta có:

\(\frac{1}{x^2+x}=\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

Tương tự, ta được:

\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng BĐT Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\le\frac{1}{4}\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Do đó:

\(VT\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\left(1\right)\)

Mặt khác:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\left(2\right)\)

TỪ (1) VÀ (2) TA CÓ ĐIỀU PHẢI CHỨNG MINH.