Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)
\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)
\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)
a, \(x^4+2x^2+1-x^2\)
= \(\left(x^2+1\right)^2-x^2\)
= \(\left(x^2+x+1\right)\left(x^2-x+1\right)\)
b, \(x^4+x^2+1\)
= \(x^4+2x^2+1-x^2\)
= .. ( như phần a )
c, \(y^4+64\)
= \(\left(y^2+8\right)\left(y^2-8\right)\)
d, \(4xy+3z-12y-xz\)
\(=4y\left(x-3\right)-z\left(x-3\right)\)
\(=\left(x-3\right)\left(4y-z\right)\)
e, \(x^2-4xy+4y^2-z^2+6z-9\)
\(=\left(x-2y\right)^2-\left(z-3\right)^2\)
g, \(x^2-4xy+5x+4y^2-10y\)
\(=\left(x^2-4xy+4y^2\right)+\left(5x-10y\right)\)
\(=\left(x-2y\right)^2+5\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-2y+5\right)\)
h, \(x^2-7x+6\)
\(=x^2-6x-x+6\)
\(=x\left(x-6\right)-\left(x-6\right)\)
\(=\left(x-6\right)\left(x-1\right)\)
i, \(x^3+5x^2+6x+2\)
\(=x^3+x^2+4x^2+4x+2x+2\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+2\right)\)
Lời giải:
Đặt $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t$
$\Rightarrow a=xt; b=yt; c=zt$. Ta có:
$a+b+c=xt+yt+zt=t(x+y+z)=t$
$a^2+b^2+c^2=t^2(x^2+y^2+z^2)=t^2$
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{t^2-t^2}{2}=0$
Ta có đpcm.
\(5x^2+10y^2-6xy-4x-10y+14\)
\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)-12\)
\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-5\right)^2-12\ge-12\) đề có nhầm không bạn?
a)
\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)
\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)
mà\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)và\(y\)
b)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)
\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)
Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)
và\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)
\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)
\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)
c)
\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)
\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)
\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)
Ta có \(\left(2x+1\right)^2\ge0\)với mọi \(x\)
\(\left(y-1\right)^2\ge\)với mọi \(y\)
\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)
và \(1>0\)
\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)
a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)
b. \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)
\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)
c. tương tự ý b