Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(y^2+z^2\ge2\sqrt{y^2z^2}=2yz\)
\(z^2+x^2\ge2\sqrt{z^2x^2}=2zx\)
\(x^2+1\ge2\sqrt{x^2}=2x\)
\(y^2+1\ge2\sqrt{y^2}=2y\)
\(z^2+1\ge2\sqrt{z^2}=2z\)
Cộng theo vế các BĐT trên ta có:
\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+xz+x+y+z\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2+1\right)\ge2\cdot6=12\left(xy+yz+xz+x+y+z=6\right)\)
\(\Leftrightarrow x^2+y^2+z^2+1\ge4\Leftrightarrow P\ge3\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Vậy \(P_{Min}=3\) khi \(x=y=z=1\)
\(4x^2+4y^2\ge8xy\)
\(16x^2+z^2\ge8zx\)
\(16y^2+z^2\ge8yz\)
Cộng vế với vế:
\(20x^2+20y^2+2z^2\ge8\left(xy+yz+zx\right)\)
\(\Leftrightarrow10x^2+10y^2+z^2\ge4\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)
Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có:
+) x² + y² ≥ 2xy
x² + 1 ≥ 2x
+) y² + z² ≥ 2yz
y² + 1 ≥ 2y
+) z² + x² ≥ 2xz
z² + 1 ≥ 2z
=> 2 ( x2 + y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1
Ta có đẳng thức:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
hoặc bạn áp dụng hệ thức holder á
Ta có:
\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Mặt khác:
\(\left(xy+yz+zx\right)^2=1\le3\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\Rightarrow\frac{1}{3}\le\left(x^2y^2+y^2z^2+z^2x^2\right)\)
hay \(x^4+y^4+z^4\ge\frac{1}{3}\Rightarrow A\ge\frac{1}{3}\)
Vậy \(Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Bài này có nhiều cách, xin phép làm 2 cách đơn giản. Tuy nhiên ở cách 2 tính sai chỗ nào thì tự check:) (chắc ko sai đâu:v đừng lo quá mức)
Cách 1: \(x^2+y^2\ge2xy\)
\(2x^2+2z^2\ge4xz\)
\(2y^2+2z^2\ge4yz\)
Cộng theo vế 3 bđt trên kết hợp giả thiết suy ra \(S\ge10\)
Cách 2:
Xét \(S-2\left[xy+2yz+2zx\right]\)
\(=\left(x-y\right)^2+2\left(y-z\right)^2+2\left(z-x\right)^2\ge0\)
Do đó...
Ta có (x + y +z)² ≥ 0 suy ra x² + y² + z² + 2 ( xy + yz + zx) ≥ 0
1 + 2 ( xy + yz + zx) ≥ 0
xy + yz + zx ≥ - 1 / 2
Thế thì min (xy + yz + zx) = - 1 / 2 khi x+ y + z = 0 và x² + y² + z² = 1 ( ♥ )
Lại có I xz I = I x I I z I ≤ 1 / 2 ( x² + z² ) = 1 / 2 ( 1 - y² ) ≤ 1 / 2
Thế thì min ( xz ) = - 1 / 2 khi x = - z và x² + y² + z² = 1 và y = 0 ( ♣ )
Từ ( ♥ ) và ( ♣ ) cho ta
min ( xy + yz + 2.zx ) = - 1 / 2 - 1 / 2 = - 1
khi x = √2 / 2 ; y = 0 ; z = - √2 / 2 chẳng hạn
P/C bạn dựa vào đk x + y + z = 0 ; x² + y² + z² = 1;y = 0 ; x = - z