Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(x+y+z=2019xyz=>2019x^2=\frac{x^2+xy+xz}{yz}\)
\(=>2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(=>\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
(theo BDT cô -si)
\(=>\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
tương tự \(\frac{y^2+1+\sqrt{2019y^2+1}}{z}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
=>.vt\(\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
chứng minh được \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
=>\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)
=>.vt\(\le2020\left(x+y+z\right)=2020.2019xyz=\)vt
=> dpcm
Ta có: \(2019xyz=x+y+z\)
=> \(2019xy=\frac{x}{z}+\frac{y}{z}+1>1\); \(2019yz=\frac{y}{x}+\frac{z}{x}+1>1\); \(2019xz=\frac{x}{y}+\frac{z}{y}+1>1\)
Ta lại có: \(x+y+z=2019xyz\)
=> \(2019x\left(x+y+z\right)=2019^2x^2yz\)
=> \(2019x^2+1=\left(2019^2x^2yz-2019xy\right)-\left(2019xz-1\right)\)
=> \(2019x^2+1=\left(2019xy-1\right)\left(2019xz-1\right)\le\frac{\left(2019xy+2019xz-2\right)^2}{4}\)
=> \(\sqrt{2019x^2+1}\le\frac{2019xy+2019xz-2}{2}\)
Tương tự : \(\sqrt{2019y^2+1}\le\frac{2019xy+2019yz-2}{2}\)
\(\sqrt{2019z^2+1}\le\frac{2019xz+2019yz-2}{2}\)
=> \(\frac{x^2+1+\sqrt{2019x^2+1}}{x}+\frac{y^2+1+\sqrt{2019y^2+1}}{y}+\frac{z^2+1+\sqrt{2019z^2+1}}{z}\)
\(\le\)\(\frac{x^2+1+\frac{2019xy+2019xz-2}{2}}{x}+\frac{y^2+1+\frac{2019xy+2019yz-2}{2}}{y}+\frac{z^2+1+\frac{2019xz+2019yz-2}{2}}{z}\)
\(=\frac{2x^2+2019xy+2019xz}{2x}+\frac{2y^2+2019xy+2019yz}{2y}+\frac{2z^2+2019xz+2019yz}{2z}\)
\(=x+\frac{2019}{2}y+\frac{2019}{2}z+y+\frac{2019}{2}x+\frac{2019}{2}z+z+\frac{2019}{2}x+\frac{2019}{2}y\)
\(=2020\left(x+y+z\right)=2020.2019xyz\)
Vậy có điều cần cm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=z\\x+y+z=2019xyz\end{cases}}\Leftrightarrow x=y=z=\frac{1}{\sqrt{673}}\)
Ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=2019\)
\(\Rightarrow\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)
\(=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\)\(\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(cô -si)
\(\Rightarrow\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}\)\(=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta có: \(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
và \(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Cộng từng vế của các bđt trên, ta được:
\(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019.3\left(xy+yz+zx\right)}{2019xyz}\)
\(\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020.2019xyz\)
Vậy \(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le2019.2020xyz\left(đpcm\right)\)
Theo bài ra ta có:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}=\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(Theo BĐT Cosi)
\(\Rightarrow\frac{x^2+1+\sqrt{2019^2+1}}{x}\le\frac{x+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự:
\(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow VT\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019\cdot3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}\)\(=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020\cdot2019xyz=VP\)
=> ĐPCM
Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\); \(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
Từ giả thiết suy ra : \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Nên ta có : \(\frac{\sqrt{1+x^2}}{x}=\sqrt{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}\le\frac{1}{2}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Dấu " = " \(\Leftrightarrow y=z\)
Vậy \(\frac{1+\sqrt{1+x^2}}{x}\le\frac{1}{2}\left(\frac{4}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta có :
\(\frac{1+\sqrt{1+y^2}}{y}\le\frac{1}{2}\left(\frac{1}{x}+\frac{4}{y}+\frac{1}{z}\right);\frac{1+\sqrt{1+z^2}}{z}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}\right)\)
Vậy ta có :
\(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Dấu " = " \(\Leftrightarrow x=y=z\)
Ta có :
\(\left(x+y+z\right)^2-3\left(xy+yz+xx\right)=...=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\ge0\)
Nên \(\left(x+y+x\right)^2\ge3\left(xy+yz+xx\right)\)
\(\Rightarrow\left(xyz\right)^2\ge3\left(xy+yz+xz\right)\Rightarrow3\frac{xy+yz+xz}{xyz}\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le xyz\)
Vậy \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Dấu " = " \(\Leftrightarrow x=y=z\)
Chúc bạn học tốt !!
\(\frac{1+\frac{1}{2}.2.\sqrt{1+x^2}}{x}\le\frac{1+\frac{1}{4}\left(x^2+5\right)}{x}=\frac{x}{4}+\frac{9}{4x}\)
\(\Rightarrow VT\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(VT\le\frac{1}{4}\left(x+y+z\right)+\frac{9\left(xy+yz+zx\right)}{4xyz}=\frac{1}{4}\left(x+y+z\right)+\frac{9\left(xy+yz+zx\right)}{4\left(x+y+z\right)}\)
\(VT\le\frac{1}{4}\left(x+y+z\right)+\frac{3\left(x+y+z\right)^2}{4\left(x+y+z\right)}=x+y+z=xyz\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
Ta có :
\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)
tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\); \(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)
\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)
\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)
Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)
Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)
Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))
làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)
vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)
[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)
dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)