K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

Áp dụng tính chất dãy tỉ số bằng nhau được:

\(\dfrac{x}{2x+y+z}\)=\(\dfrac{y}{2y+x+z}\)=\(\dfrac{z}{2z+x+y}\)=\(\dfrac{x+y+z}{2x+y+z+2y+x+z+2z+x+y}\)=\(\dfrac{x+y+z}{3x+3y+3z}\)=\(\dfrac{x+y+z}{3.\left(x+y+z\right)}\)=\(\dfrac{1}{3}\)=\(\dfrac{3}{9}\)<\(\dfrac{3}{4}\)(đpcm)

14 tháng 1 2019

Ta có:

\(\dfrac{x}{2x+y+z}=\dfrac{x}{\left(x+y\right)+\left(y+z\right)}\le\dfrac{x}{2\sqrt{\left(x+y\right)\left(y+z\right)}}\)

Tương tự với các phân số khác

\(\Rightarrow VT\le\dfrac{1}{2}\left(\dfrac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}+\dfrac{y}{\sqrt{\left(y+z\right)\left(x+y\right)}}+\dfrac{z}{\sqrt{\left(z+x\right)\left(x+y\right)}}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{\sqrt{x}\cdot\sqrt{x}}{\sqrt{x+y}\cdot\sqrt{z+x}}+\dfrac{\sqrt{y}\cdot\sqrt{y}}{\sqrt{y+z}\cdot\sqrt{x+y}}+\dfrac{\sqrt{z}\cdot\sqrt{z}}{\sqrt{z+x}\cdot\sqrt{y+z}}\right)\)

\(\le\dfrac{1}{2}\left(\dfrac{\dfrac{x}{x+y}+\dfrac{x}{z+x}}{2}+\dfrac{\dfrac{y}{y+z}+\dfrac{y}{x+y}}{2}+\dfrac{\dfrac{z}{z+x}+\dfrac{z}{y+z}}{2}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{z+x}+\dfrac{x}{z+x}\right)}{2}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi x = y = z

6 tháng 4 2018

Đề nhảm.a;b;c ở đâu bạn -_-

a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:

\(\left\{{}\begin{matrix}\dfrac{x}{2x+y+z}=\dfrac{x}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\\\dfrac{y}{2y+x+z}=\dfrac{y}{x+y+y+z}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right)\\\dfrac{z}{2z+x+y}=\dfrac{z}{x+z+y+z}\le\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\end{matrix}\right.\)

Cộng theo vế:

\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{y+z}+\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z>0\)

b) Áp dụng bất đẳng thức AM-GM:

\(\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le\dfrac{\left(a+b-c+a-b+c\right)^2}{4}=\dfrac{4a^2}{4}=a^2\\\left(a-b+c\right)\left(-a+b+c\right)\le\dfrac{\left(a-b+c-a+b+c\right)^2}{4}=\dfrac{4c^2}{4}=c^2\\\left(a+b-c\right)\left(-a+b+c\right)\le\dfrac{\left(a+b-c-a+b+c\right)^2}{4}=\dfrac{4b^2}{4}=b^2\end{matrix}\right.\)

Nhân theo vế: \(\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)

Dấu "=" xảy ra khi: \(a=b=c>0\)

17 tháng 4 2018

Phải chứng minh BĐT trung gian: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\forall\) a,b trước khi áp dụng chứ.

18 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{x}{2x+y+z}=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{y}{2y+x+z}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right);\dfrac{z}{2z+y+x}\le\dfrac{1}{4}\left(\dfrac{z}{y+z}+\dfrac{z}{x+z}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right)+\dfrac{1}{4}\left(\dfrac{z}{y+z}+\dfrac{z}{x+z}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{y+z}+\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}\right)=\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\)

8 tháng 1 2019

cho hỏi VT là gì?

 

13 tháng 4 2018

Câu b mình vừa làm rồi

a)

Áp dụng bđt Cauchy-Scharz:

\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\)

\(=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(x+y\right)+\left(y+z\right)}+\dfrac{z}{\left(x+z\right)+\left(y+z\right)}\)

\(\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)

\(=\dfrac{1}{4}.3=\dfrac{3}{4}\)

Dấu "=" khi \(x=y=z\)

13 tháng 4 2018

Em ko nhớ là lớp 7 có học Cô-si nên chị đừng giải theo cách đó

24 tháng 11 2021

\(TH_1:x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\\ \Rightarrow Q=\dfrac{-z}{z}+\dfrac{-x}{x}+\dfrac{-y}{y}=-3\\ TH_2:x+y+z\ne0\\ \Rightarrow\dfrac{3x-2y+z}{x}=\dfrac{3y-2z+x}{y}=\dfrac{3z-2x+y}{z}=\dfrac{2x+2y+2z}{x+y+z}=2\\ \Rightarrow\left\{{}\begin{matrix}3x-2y+z=x\\3y-2z+x=y\\3z-2x+y=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-2y=-z\\2y-2z=-x\\2z-2x=-y\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x-y=-\dfrac{z}{2}\\y-z=-\dfrac{x}{2}\\z-x=-\dfrac{y}{2}\end{matrix}\right.\)

\(\Rightarrow Q=-\dfrac{z}{2}:z-\dfrac{x}{2}:x-\dfrac{y}{2}:y=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{2x+y+z}=\frac{1}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

\(\Rightarrow \frac{x}{2x+y+z}\leq \frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{2y+x+z}\leq \frac{1}{4}\left(\frac{y}{y+z}+\frac{y}{y+x}\right)\)

\(\frac{z}{2z+x+y}\leq \frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng theo vế:
\(D\leq \frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{4}\) (dpcm)

Dấu bằng xảy ra khi $x=y=z$