Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Ta có :
\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)
Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)
\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)
tương tự với hai ông còn lại sau đó cộng lại ta được:
\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)
Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)
\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)
CMTT và cộng theo vế:
\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)
\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\Sigma\dfrac{1}{2x+3y+3z}\le\Sigma\dfrac{1}{16}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)
\(\Rightarrow P\le\dfrac{4}{16}\Sigma\left(\dfrac{1}{x+y}\right)=\dfrac{2017}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\dfrac{3}{4034}\)
Trai Vô Đối câu này đề thi vô lớp 10 tỉnh Thanh Hóa ( tất cả thí sinh nek .... lúc nào rảnh mik đăng lên thử xem sao )
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)
\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)
\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)
Cộng theo vế:
\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)
\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
\(\left (\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)(x+x+x+y+y+z)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{3}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{36}{3x+2y+z}\)
Thực hiện tương tự:
\(\frac{3}{y}+\frac{2}{z}+\frac{1}{x}\geq \frac{36}{3y+2z+x}\)
\(\frac{3}{z}+\frac{2}{x}+\frac{1}{y}\geq \frac{36}{3z+2x+y}\)
Cộng theo vế các BĐT vừa có thu được:
\(6\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 36\left(\frac{1}{3x+2y+z}+\frac{1}{3y+2z+x}+\frac{1}{3z+2x+y}\right)\)
\(\Leftrightarrow 72\geq 36\left(\frac{1}{3x+2y+z}+\frac{1}{3y+2z+x}+\frac{1}{3z+2x+y}\right)\)
\(\Leftrightarrow P\leq 2\)
Vậy \(P_{\max}=2\). Dấu bằng xảy ra khi \(x=y=z=\frac{1}{4}\)
\(P=\dfrac{1}{3x\left(y+z\right)+x+y+z}+\dfrac{1}{3y\left(z+x\right)+x+y+z}+\dfrac{1}{3z\left(x+y\right)+x+y+z}\)
\(P\le\dfrac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}+\dfrac{1}{3y\left(z+x\right)+3\sqrt[3]{xyz}}+\dfrac{1}{3z\left(x+y\right)+3\sqrt[3]{xyz}}\)
\(P\le\dfrac{1}{3x\left(y+z\right)+3}+\dfrac{1}{3y\left(z+x\right)+3}+\dfrac{1}{3z\left(x+y\right)+3}\)
Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{1}{a^3\left(b^3+c^3\right)+1}+\dfrac{1}{b^3\left(c^3+a^3\right)+1}+\dfrac{1}{c^3\left(a^3+b^3\right)+1}\right)\)
\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{1}{a^3bc\left(b+c\right)+1}+\dfrac{1}{b^3ac\left(a+c\right)+1}+\dfrac{1}{c^3ab\left(a+b\right)+1}\right)\)
\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{bc}{a\left(b+c\right)+bc}+\dfrac{ac}{b\left(a+c\right)+ac}+\dfrac{ab}{c\left(a+b\right)+ab}\right)=\dfrac{1}{3}\)
\(P_{max}=\dfrac{1}{3}\) khi \(a=b=c=1\) hay \(x=y=z=1\)
Áp dụng BĐT Cauchy-Schwarz:
\(\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{16}{3x+3y+2z}\\ \Leftrightarrow\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\\ \Leftrightarrow\sum\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\right)=\dfrac{4}{16}\cdot6=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)