Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)(đk: \(x\ne y\ne z\))
\(=\dfrac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Chắc đề là tính ha!
\(=\dfrac{x+y+y-z+x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ =\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ =0\\ Vậy.A=0\)
Phân số cuối cùng chắc em ghi nhầm
\(\dfrac{x}{y+z+t}+\dfrac{y+z+t}{9x}\ge2\sqrt{\dfrac{x\left(y+z+t\right)}{9x\left(y+z+t\right)}}=\dfrac{2}{3}\)
Tương tự:
\(\dfrac{y}{z+t+x}+\dfrac{z+t+x}{9y}\ge\dfrac{2}{3}\)
\(\dfrac{z}{t+x+y}+\dfrac{t+x+y}{9z}\ge\dfrac{2}{3}\)
\(\dfrac{t}{x+y+z}+\dfrac{x+y+z}{9t}\ge\dfrac{2}{3}\)
Đồng thời:
\(\dfrac{8}{9}\left(\dfrac{y+z+t}{x}+\dfrac{z+t+x}{y}+\dfrac{t+x+y}{z}+\dfrac{x+y+z}{t}\right)\)
\(\ge\dfrac{8}{9}\left(\dfrac{3\sqrt[3]{yzt}}{x}+\dfrac{3\sqrt[3]{ztx}}{y}+\dfrac{3\sqrt[3]{txy}}{z}+\dfrac{3\sqrt[3]{xyz}}{t}\right)\)
\(\ge\dfrac{8}{3}.4\sqrt[4]{\dfrac{\sqrt[3]{yzt}.\sqrt[3]{ztx}.\sqrt[3]{txy}.\sqrt[3]{xyz}}{xyzt}}=\dfrac{32}{3}\)
Cộng vế:
\(VT\ge4.\dfrac{2}{3}+\dfrac{32}{3}=\dfrac{40}{3}\)
Dấu "=" xảy ra khi \(x=y=z=t\)
Lời giải:
Ta có:
\(A=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}=\frac{1}{x(x+1)}+\frac{1}{y(y+1)}+\frac{1}{z(z+1)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)(1)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x}+\frac{1}{1}\geq \frac{4}{x+1}\) và tương tự với các phân thức còn lại rồi cộng lại:
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\geq 4\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\Leftrightarrow \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\right)(2)\)
Từ (1); (2) suy ra \(A\geq \frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)\)
Mà theo BĐT Cauchy- Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=\frac{9}{3}=3\)
Do đó: \(A\geq \frac{3}{4}(3-1)=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!