K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

Nhìn qua thấy bậc của bđt là không đồng bậc nên hơi căng đấy...

Chú ý: \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{x+y+z}{xyz}\Rightarrow xyz=\frac{x+y+z}{2019}\)

\(LHS=\Sigma_{cyc}\frac{\sqrt{2019x^2+1}+1}{x}=\Sigma_{cyc}\frac{\sqrt{\frac{x}{y}+\frac{x^2}{yz}+\frac{x}{z}+1}+1}{x}\)( thay \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\))

\(=\Sigma_{cyc}\frac{\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}+1}{x}=\Sigma_{cyc}\left[\sqrt{\frac{\left(\frac{x}{y}+1\right)}{x}.\frac{\left(\frac{x}{z}+1\right)}{x}}+\frac{1}{x}\right]\)

\(=\Sigma_{cyc}\sqrt{\left(\frac{1}{y}+\frac{1}{x}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{2}\left[4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{3\left(xy+yz+zx\right)}{\frac{\left(x+y+z\right)}{2019}}=\frac{6057\left(xy+yz+zx\right)}{x+y+z}\)

\(\le\frac{6057.\frac{\left(x+y+z\right)^2}{3}}{x+y+z}=2019\left(x+y+z\right)\)(đpcm)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{\frac{3}{2019}}\)

P/s: Check hộ t phát:3

24 tháng 10 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì bài toán thành

Cho: \(ab+bc+ca=2019\)

Chứng minh:

\(\sqrt{2019+a^2}+\sqrt{2019+b^2}+\sqrt{2019+c^2}+\left(a+b+c\right)\le2019\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có:

\(VT=\sqrt{ab+bc+ca+a^2}+\sqrt{ab+bc+ca+b^2}+\sqrt{ab+bc+ca+c^2}+\left(a+b+c\right)\)

\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}+\left(a+b+c\right)\)

\(\le3\left(a+b+c\right)\)

\(VP=\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\)

\(\ge3\left(a+b+c\right)\)

Tới đây bí :(

NV
25 tháng 12 2020

\(A=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{xyz+yz+y}\)

\(=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{xyz}{y+xyz+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{2019}{y+2019+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{yz+y+2019}{yz+y+2019}=1\)

27 tháng 1 2019

\(VT=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{2}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{2}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)\ge\dfrac{1}{2}.\dfrac{2}{\sqrt{xy}}+\dfrac{1}{2}.\dfrac{1}{\sqrt{yz}}+\dfrac{1}{2}.\dfrac{1}{\sqrt{zx}}=\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

Dấu "=" xảy ra <=> x = y = z > 0

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$

14 tháng 6 2017

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)

11 tháng 10 2020

Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)

Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1

Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1

Dự đoán MaxP = 1 khi c = t = k = 1

Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z

11 tháng 10 2020

Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)

CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)

\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)

Từ (1), (2) và (3) cộng vế theo vế ta có:

\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)

=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)

Dấu "=" xảy ra <=> x = y = z

Vậy MaxP = 1 <=> x = y = z