Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{x}{z}=1\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Dễ thấy y + 2018 > y + 2017 nên 2x > 2z
\(\Rightarrow2^x⋮2^z\)
hay y + 2018 \(⋮\) y + 2017
=> y + 2017 + 1 \(⋮\) y + 2017
Vì y + 2017 \(⋮\) y + 2017 nên 1 \(⋮\) y + 2017
\(y+2017\in\left\{\pm1\right\}\)
+) \(y+2017=1\Rightarrow y=-2016\)
Lúc đó x = 1; z = 0 (tm)
+) \(y+2017=-1\Rightarrow y=-2018\)
Lúc đó \(2^z=-1\)(vô lí)
Vậy x = 1;y = -2016;z=0
nhanh nhanh các bạn cần gấp