Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)
BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)
Áp dụng vào bài toán:
\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)
\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)
\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)
Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)
BĐT \(\Leftrightarrow\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}\le1+\frac{x}{z}+\frac{z}{x}+1\)
Xét BĐT tổng quát : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng )
Nên \(\frac{a}{b}+\frac{b}{a}\ge2\)
Khi đó ta có BĐT trên đúng.
@ Em không chắc vì em mới đọc cái này ạ, có gì sai mn chỉ ạ !
Áp dụng BĐT Cô - si cho 3 bộ số không âm
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)
\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)
\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)
Mà \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)
Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)
\(VT=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(=2+\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\)
Bài toán trở thành \(\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\ge\frac{x+y+z}{3\sqrt{xyz}}\)
Áp dụng bất đẳng thức AM-GM:
\(\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\ge3\sqrt[3]{\frac{z^3}{xyz}}=\frac{3z}{\sqrt[3]{xyz}}\)
Tương tự:
\(\frac{y}{x}+\frac{y}{z}+\frac{y}{y}\ge\frac{3y}{\sqrt[3]{xyz}}\)
\(\frac{x}{z}+\frac{x}{y}+\frac{x}{x}\ge\frac{3x}{\sqrt[3]{xyz}}\)
\(\Leftrightarrow VT+3\ge3+\frac{3}{\sqrt[3]{xyz}}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{3\left(x+y+z\right)}{\sqrt[3]{xyz}}\)\(\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Is it true?
\(x^2+y^2+z^2-\left(x+y+z\right)\le\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}\ge\frac{1}{3}\left(x+y+z\right)^2-\left(x+y+z\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)-\frac{9}{4}\le0\)
\(\Rightarrow\frac{3-3\sqrt{2}}{2}\le x+y+z\le\frac{3+3\sqrt{2}}{2}\)
\(P=\frac{1}{2}\left(x^2+y^2+z^2\right)+\frac{x^2+y^2+z^2}{xyz}\)
\(P\ge\frac{3}{2}\sqrt[3]{\left(xyz\right)^2}+\frac{3\sqrt[3]{\left(xyz\right)^2}}{xyz}=\frac{3}{2}\sqrt[3]{\left(xyz\right)^2}+\frac{3}{\sqrt[3]{xyz}}\)
\(P\ge\frac{3}{2}\left(\sqrt[3]{\left(xyz\right)^2}+\frac{1}{\sqrt[3]{xyz}}+\frac{1}{\sqrt[3]{xyz}}\right)\ge\frac{9}{2}\) (AM-GM trực tiếp biểu thức trong ngoặc)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bạn tham khảo:
Câu hỏi của Trần Minh Hiển - Toán lớp 9 | Học trực tuyến