Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)+z\left(x-y\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y+z\right)}=\dfrac{x+y}{x+y+z}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2xz}=\dfrac{\left(x+y\right)^2-z^2}{\left(x-z\right)^2-y^2}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-y-z\right)\left(x-z+y\right)}\)\(=\dfrac{x+y+z}{x-y-z}\)
c) \(\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\dfrac{x^2-1}{x}\)
d) \(\dfrac{4x^2\left(x-2\right)+3\left(x-2\right)}{4x^2\left(3x+1\right)+3\left(3x+1\right)}=\dfrac{\left(x-2\right)\left(4x^2+3\right)}{\left(3x+1\right)\left(4x^2+3\right)}=\dfrac{x-2}{3x+1}\)
\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)
Ta có :
\(M=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(\Rightarrow M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
\(\Rightarrow M=\frac{2\sqrt{x-1}}{2x}+\frac{2\sqrt{y-2}.\sqrt{2}}{2y.\sqrt{2}}+\frac{2\sqrt{z-3}.\sqrt{3}}{2z.\sqrt{3}}\)
\(\Rightarrow M\le\frac{x-1+1}{2x}+\frac{y-2+2}{2y.\sqrt{2}}+\frac{z-3+3}{2z.\sqrt{3}}\)( Áp dụng BĐT \(2xy\le x^2+y^2\))
\(\Rightarrow M\le\frac{x}{2x}+\frac{y}{2y.\sqrt{2}}+\frac{z}{2z.\sqrt{3}}\)
\(\Rightarrow M\le\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)\)
\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)
\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)
\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)
Áp dụng BĐT Svac ta có:
\(P=\dfrac{x^2}{y+3z}+\dfrac{y^2}{z+3x}+\dfrac{z^2}{x+3y}\ge\dfrac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\dfrac{x+y+z}{4}=\dfrac{3}{4}\)
Dấu '=' xảy ra khi \(x=y=z=1\)
Vậy \(P_{min}=\dfrac{3}{4}\) khi \(x=y=z=1\)