K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$

$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)

$\Leftrightarrow 2t^3+9t^2-27\geq 0$

$\Leftrightarrow (t+3)^2(2t-3)\geq 0$

$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$

31 tháng 1 2023

Cho em hỏi là thầy sài bđt gì vậy ạ?

 

4 tháng 12 2021

sai đề

NV
4 tháng 12 2021

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

NV
23 tháng 10 2020

BĐT tương đương:

\(\frac{1}{z\left(1+\frac{1}{x}\right)}+\frac{1}{x\left(1+\frac{1}{y}\right)}+\frac{1}{y\left(1+\frac{1}{z}\right)}\ge2\)

Từ giả thiết:

\(xy+yz+zx+2xyz=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2=\frac{1}{xyz}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a+b+c+2=abc\)

\(\Rightarrow a+b+c+2\le\frac{1}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\left(a+b+c\right)^3-27\left(a+b+c\right)-54\ge0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(a+b+c+3\right)^2\ge0\)

\(\Leftrightarrow a+b+c\ge6\)

BĐT trở thành: \(\frac{c}{1+a}+\frac{a}{1+b}+\frac{b}{1+c}\ge2\)

Thật vậy, ta có:

\(VT=\frac{a^2}{a+ab}+\frac{b^2}{b+bc}+\frac{c^2}{c+ca}\ge\frac{\left(a+b+c\right)^2}{a+b+c+ab+bc+ca}\ge\frac{3\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(VT\ge\frac{3\left(a+b+c\right)}{3+a+b+c}=\frac{2\left(a+b+c\right)+a+b+c}{a+b+c+3}\ge\frac{2\left(a+b+c\right)+6}{a+b+c+3}=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+zx}+\sqrt{z\left(x+y+z\right)+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\). (1)

Theo bđt Bunhiakowski:

\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\).

Tương tự: \(\sqrt{\left(y+z\right)\left(y+x\right)}\ge y+\sqrt{zx}\)\(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\).

Cộng vế với vế và kết hợp với gt x + y + z = 1 ta có (1) đúng.

Vậy ta có đpcm.

NV
15 tháng 1 2021

\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

Tương tự:

\(\sqrt{y+zx}\ge y+\sqrt{zx}\) ; \(\sqrt{z+xy}\ge z+\sqrt{xy}\)

Cộng vế với vế:

\(VT\ge\left(x+y+z\right)+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=...\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$

$=(2x-1)(2y-1)(2z-1)+1$

Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$

$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$

$\Rightarrow 2\text{VT}\leq 2$

$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.

16 tháng 1 2020

\(VT\ge\frac{9}{\Sigma_{cyc}\sqrt{xy+x+y}}\ge\frac{9}{\sqrt{\left(1+1+1\right)\left(2x+2y+2z+xy+yz+zx\right)}}\ge\frac{9}{\sqrt{3\left[6+\frac{\left(x+y+z\right)^2}{3}\right]}}=\sqrt{3}\)