Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
BĐT cần chứng mình tương đương với:
$(xy+yz+xz)^2\geq 3(x+y+z)$
$\Leftrightarrow (xy+yz+xz)^2\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z)\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2\geq xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2-xyz(x+y+z)\geq 0$
$\Leftrightarrow 2(xy)^2+2(yz)^2+2(xz)^2-2xyz(x+y+z)\geq 0$
$\Leftrightarrow (xy-yz)^2+(yz-xz)^2+(xz-xy)^2\geq 0$
(luôn đúng với mọi $x,y,z\geq 0$)
Dấu "=" xảy ra khi $x=y=z=1$
Lời giải:
a. Xét hiệu:
$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$
$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$
$\Rightarrow x^3+y^3\geq xy(x+y)$
Dấu "=" xảy ra khi $x=y$
b.
Áp dụng BĐT phần a vô:
$x^3+y^3\geq xy(x+y)$
$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$
$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$
Hoàn toàn tương tự với các phân thức còn lại suy ra:
$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$
Có BĐT phụ:
\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Áp dụng
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\)
\(\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)
\(=\frac{1}{xyz}\)
do x,y,z là các số dương nên
\(x^2-xy+y^2\ge xy\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)
tương tự ta cũng có : \(y^3+z^3\ge yz\left(y+z\right)\)
\(z^3+x^3\ge zx\left(z+x\right)\)
\(\Rightarrow\Sigma\dfrac{1}{x^3+y^3+xyz}\le\Sigma\dfrac{1}{xy\left(x+y+z\right)}=\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)
\(=\dfrac{1}{x+y+z}\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\left(đpcm\right)\)
Đặt \(x^3=a,y^3=b,z^3=c\Rightarrow abc=1\)
\(P=\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)
Ta chứng minh bổ đề sau
\(\dfrac{a^3+b^3}{a^2+ab+b^2}\ge\dfrac{a+b}{3}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge a^3+2ab^2+2a^2b+b^3\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
Bất đẳng thức cuối luôn đúng. Sử dụng bổ đề ta được
\(P\ge\dfrac{a+b}{3}+\dfrac{b+c}{3}+\dfrac{c+a}{3}=\dfrac{2\left(a+b+c\right)}{3}\ge\dfrac{2.3\sqrt[3]{abc}}{3}=2\)
BĐT cần chứng minh tương đương với
\(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{3}{2}\)
Đặt\(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)
Khi đó áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{1}{\sqrt{xy}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng vào có:
\(Σ\dfrac{1}{\sqrt{xy}}\le\dfrac{1}{2}\left(\dfrac{a+c}{a+c}+\dfrac{b+c}{b+c}+\dfrac{a+b}{a+b}\right)=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=2\)
Ta có : 1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2 <=> \(\frac{1}{x^2+1}\ge\frac{1}{2}\)
\(\frac{1}{y^2+1}\ge\frac{1}{2}\)
\(\frac{1}{z^2+1}\ge\frac{1}{2}\)
Mà \(\frac{1}{x^2+1}\ge\frac{1}{2}\Leftrightarrow1.2\ge x^2+1\Leftrightarrow x^2\le1\)
Mà x,y,z > 0 và xyz=1 => 0 < x,y,z < 1 => x2 < 1
tương tự vs y và z nhé
tham khảo [Toán 12] Chứng minh bất đẳng thức: $x^3+y^3+z^3 \ge x+y+z$
lỗi link ấy =)) bạn vào thống kê hỏi đáp của mình để xem link nhé