Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{(x+z)(z-y)(y-z)}{yz^2}=\frac{-(x+z)(y-z)^2}{yz^2}$
Vì $-x+y-z=0$ nên $-(x+z)=-y$
$y-z=x$
$\Rightarrow A=\frac{-yx^2}{yz^2}=\frac{-x^2}{z^2}$
Đến đây là kịch rồi bạn ạ, không tính được giá trị cụ thể của biểu thức A. Bạn xem lại đề.
x-y-z=0
\(\Rightarrow x=y+z\)
\(\Rightarrow y=x-z\)
\(\Rightarrow-z=y-z\)
\(B=\left(1-\dfrac{z}{x}\right).\left(1-\dfrac{y}{x}\right).\left(1+\dfrac{y}{z}\right)\)
\(B=\left(\dfrac{x-z}{x}\right).\left(\dfrac{y-x}{y}\right).\left(\dfrac{z+y}{z}\right)\)
\(B=(\dfrac{y}{x}).\left(\dfrac{-z}{y}\right).\left(\dfrac{x}{z}\right)\)
\(B=\dfrac{\left(y.x.-z\right)}{\left(y.x.z\right)}\Rightarrow B=-1\)