K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho các số thực dưong x,y,z thỏa mãn : x2 y2 z2=3chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}} \dfrac{y}{\sqrt[3]{zx}} \df... - Hoc24

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Cách khác:

Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:

\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)

\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)

Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)

Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$

Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$

BĐT $(*)$ trở thành:

$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$

$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$

$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$

Điều này đúng với mọi $\sqrt{3}< a\leq 3$

Do đó BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

24 tháng 12 2020

nhờ mn giúp mk bài này vs ạ

mk đang cần gấp !

cảm ơn mn nhiều

NV
25 tháng 12 2020

Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)

\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)

Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)

Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)

\(\Rightarrow3\ge a^5+b^6+b^5\)

BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\) 

Ta có:

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)

Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)

Từ (1);(2) \(\Rightarrow\) đpcm

2 tháng 1 2018

Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được

\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)

Ta phải chứng minh:

\(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)

\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)

Theo C.B.S

\(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Phải chứng minh

\(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

\(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)

Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)

\(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

=> ĐPCM

12 tháng 3 2017

solution:

ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )

\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)

\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)

tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)

cả 2 vế các BĐT đều dương,cộng vế với vế:

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)

Áp dụng BĐT bunyakovsky ta có:

\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow S\ge x^2+y^2+z^2\)

đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)

dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1

*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)

\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)

13 tháng 3 2017

cái cách 2 là svac mà nhỉ

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

4 tháng 4 2017

\(VT=\sqrt{\dfrac{yz}{x^2+xy+yz+xz}}+\sqrt{\dfrac{xy}{y^2+xy+yz+xz}}+\sqrt{\dfrac{xz}{z^2+xy+yz+xz}}\)

\(VT=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\\\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{y}{y+z}}{2}\\\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{z}{y+z}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{x+z}+\dfrac{x}{x+z}\right)}{2}\)

\(\Rightarrow VT\le\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=4\sqrt{42}\)

4 tháng 4 2017

Sửa đề:\(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{z^2+2016}}+\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{3}{2}\)

Giải

Ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{z^2+xy+xz+yz}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\sqrt{\dfrac{yz}{x^2+2016}}\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right);\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{z}{y+z}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(\Sigma\sqrt{\dfrac{xy}{z^2+2016}}\le\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=4\sqrt{42}\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

Để cho gọn đặt \((\sqrt{x}; \sqrt{y}; \sqrt{z})=(a,b,c)\) với \(a,b,c>0\)

Khi đó:

\(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{1}{2}(\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab})\)

\(=\frac{1}{2}\left(1-\frac{a^2}{a^2+2bc}+1-\frac{b^2}{b^2+2ac}+1-\frac{c^2}{c^2+2ab}\right)\)

\(=\frac{3}{2}-\frac{1}{2}\underbrace{\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)}_{M}\)

Áp dụng BĐT Cauchy-Schwarz:

\(M\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

\(\Rightarrow A=\frac{3}{2}-\frac{1}{2}M\leq \frac{3}{2}-\frac{1}{2}=1\)

Vậy \(A_{\max}=1\Leftrightarrow a=b=c\Leftrightarrow x=y=z\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Tham khảo tại đây:

Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến

11 tháng 7 2021

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)

\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)

11 tháng 7 2021

dòng 3 từ dưới lên là c^3a^3 nhé, mình gõ lỗi xíu

 

NV
11 tháng 7 2021

\(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\)

\(\Rightarrow3\ge3\sqrt[3]{\left(ab.bc.ca\right)^3}=3\left(abc\right)^2\Rightarrow a^2b^2c^2\le1\)

Ta có: \(\dfrac{a^{10}}{b^2c^2}+a^2b^2c^2\ge2a^6\)

Tương tự và cộng lại: \(P+3\left(abc\right)^2\ge2\left(a^6+b^6+c^6\right)\)

\(\Rightarrow P\ge2\left(a^6+b^6+c^6\right)-3a^2b^2c^2\ge2\left[\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\right]-3=3\)