K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Thay \(x+y=17,xy=12\)vào ta có

\(17^2-2.12=265\)

31 tháng 10 2021

a: \(=\left(x-y\right)\left(x+y\right)\)

\(=74\cdot100=7400\)

c: \(=\left(x+2\right)^3\)

\(=10^3=1000\)

31 tháng 10 2021

a) \(=\left(x-y\right)\left(x+y\right)\)

    Thay \(x=87;y=13\) ta đc:   \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)

b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

   Thay \(x=10;y=-1\) ta đc:

    \(10^3-\left(-1\right)^3=1000-1=999\)

c)\(=\left(x+2\right)^3\)

   Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)

d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)

   Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

28 tháng 12 2017

24 tháng 9 2019

a) Tìm được A = (x- y)(x + 5y).

Thay x = 4 và y = -4 vào A tìm được A = -128.

b) Tìm được B = 9 ( x   - 1 ) 2 .

Thay x = - 4 vào B tìm được B = 81 4 .  

c) Tìm được C = (x - y)(y - z)(x - z).

Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.

d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)

b:\(B=x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=125^2-2\cdot2500\)

=10625

c:  \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)

15 tháng 7 2021

B1

a, \(=>A=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x.2y=4xy\)

b, \(=>B=\left[\left(x+y\right)-\left(x-y\right)\right]^2=\left[x+y-x+y\right]^2=\left[2y\right]^2=4y^2\)

c,\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\)\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1^3\right)\left(x^3-1^3\right)=x^6-1\)

d, \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\)

\(+\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)\)

\(=a\left(a+2b-2c\right)+a\left(a-2b\right)\)

\(=a\left(a+2b-2c+a-2b\right)=a\left(2a-2c\right)=2a^2-2ac\)

B2:

\(\)\(x+y=3=>\left(x+y\right)^2=9=>x^2+2xy+y^2=9\)

\(=>xy=\dfrac{9-\left(x^2+y^2\right)}{2}=\dfrac{9-\left(17\right)}{2}=-4\)

\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(17+4\right)=63\)

Bài 1: 

a) Ta có: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=x^2+2xy+y^2-x^2+2xy+y^2\)

=4xy

b) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)^2\)

\(=\left(2y\right)^2=4y^2\)

c) Ta có: \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

d) Ta có: \(\left(a+b-c\right)^2+\left(a+b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a+b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)+\left(a+b+c-b+c\right)\left(a+b+c+b-c\right)\)

\(=a\cdot\left(a+2b-2c\right)+\left(a+2c\right)\left(a-2b\right)\)

\(=a^2+2ab-2ac+a^2-2ab+2ac-4bc\)

\(=2a^2-4bc\)

4 tháng 11 2018

Ta có : x + y = 7 

=> y = 7 - x 

Lại có : x(7 - x) = 12

<=> 7x - x2 = 12

<=> 7x - x2 - 12 = 0

<=> x2 - 7x + 12 = 0 (chia cả hai vế cho -1)

<=> x2 - 3x - 4x + 12 = 0 

<=> x(x - 3) - 4(x - 3) = 0 

<=> (x - 3)(x - 4) = 0 

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\x=4\left(tm\right)\end{cases}}}\)

=> y = 4 ; 3 

Ta có : |x - y| = |3 - 4| = 1 

           |x - y| = |4 - 3| = 1

4 tháng 11 2018

TA có x+y=7 suy ra x=7-y

Thay vào bt x.y=12 ta có \(\left(7-y\right)y=12\Rightarrow7y-y^2=12\)

\(\Rightarrow y^2-7y+12=0\)

\(\Rightarrow\left(y-3\right)\left(y-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-3=0\\y-4=0\end{cases}\Rightarrow\orbr{\begin{cases}y=3\Rightarrow x=4\Rightarrow\left|x-y\right|=1\\y=4\Rightarrow x=3\Rightarrow\left|x-y\right|=1\end{cases}}}\)

Vậy \(\left|x-y\right|=1\)