Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 dễ thì tự làm
Bài 2
\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0
\(\Rightarrow y=-x\)
\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)
Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)
a. 12xy2 - 8x2y = 4xy . (3y - 2x)
b. 3x + 3y - x2 - xy = (3x + 3y) - (x2 + xy) = 3 . (x + y) - x . (x + y) = (x + y)(3 - x)
\(\left(a-x-y\right)^3-\left(a+x-y\right)^3\)
\(=\left[\left(a-x-y\right)-\left(a+x-y\right)\right]\left[\left(a-x-y\right)^2+\left(a-x-y\right)\left(a+x-y\right)+\left(a+x-y\right)^2\right]\)
\(=-2x.\left[a^2+x^2+y^2-2ax+2xy-2ay+\left(a-y\right)^2-x^2+a^2+x^2+y^2+2ax-2xy-2ay\right]\)
\(=-2x\left[a^2+x^2+y^2-2ax+2xy-2ay+a^2-2ay+y^2-x^2+a^2+x^2+y^2+2ax-2xy-2ay\right]\)
\(=-2x\left(3a^2+x^2+3y^2-4ay\right)\)
Lời giải:
$y^2+2xy-3x-2=0$
$\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$
$\Leftrightarrow (x+y)^2=(x+1)(x+2)$
Dễ thấy với mọi $x\in\mathbb{Z}$ thì $(x+1, x+2)=1$ nên để tích của chúng là scp thì $x+1, x+2$ cũng là scp
Đặt $x+1=a^2; x+2=b^2$ với $a,b\in\mathbb{Z}$
$\Rightarrow 1=b^2-a^2=(b-a)(b+a)$
$\Rightarrow b-a=b+a=1$ hoặc $b-a=b+a=-1$
$\Rightarrow a=0\Rightarrow x=-1$
Khi đó:
$(x+y)^2=(x+1)(x+2)=0$
$\Rightarrow y=-x=1$
Vậy $(x,y)=(-1,1)$
ta có (x+2016)^2+(x+2017)^2=0
\(\Rightarrow\hept{\begin{cases}\left(x+2016\right)^2=0\\\left(y+2017\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+2016=0\\y+2017=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=-2017\end{cases}}}\)
tổng cùa x + y = - 2016 + ( - 2017) = -4033
Thôi làm thế này đi:3
\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)
Áp dụng BĐT Cosi ta có:
\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(A=-\frac{2xy}{1+xy}=-2xy-2\)
Áp dụng BĐT Cosi ta có:
\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:
\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )
\(\Rightarrow A\ge-1-2=-3\)
dấu "=" xảy ra khi:
\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )
vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)