Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x+y=1\)\(\Rightarrow x=1-y\)
Khi đó: \(P=\left(1-y\right)^3+y^3+\left(1-y\right)y\)
\(=1-3y+3y^2-y^3+y^3+y-y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{4}\right)-\frac{1}{2}+1\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
cậu thế vào, Ta có:
x=12,y=5
Vậy x+y=17.Toán vòng 11 olympic chứ gì, mình thi rồi.
\(x+y=1\Rightarrow y=1-x\)
\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)
\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)