Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A=|x| - |x-2| }\le|x-x+2|=2\)
=> MaxA=2 , dấu bằng xảy ra khi \(x\ge2\)
Ta có \(x+y+z=1\Rightarrow x+y=1-z,\) ta có:
\(\frac{x+y}{\sqrt{xy+z}}=\frac{1-z}{\sqrt{xy+1-x-y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}\)
\(\frac{y+z}{\sqrt{yz+x}}=\frac{1-x}{\sqrt{yz+1-y-z}}=\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}\)
\(\frac{z+x}{\sqrt{zx+y}}=\frac{1-y}{\sqrt{zx+1-x-z}}=\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
Khi đó \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}+\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}+\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
\(\ge3\sqrt[3]{\frac{1-z}{\left(1-x\right)\left(1-y\right)}\times\frac{1-x}{\left(1-y\right)\left(1-z\right)}\times\frac{1-y}{\left(1-x\right)\left(1-z\right)}}=3\)
Vậy \(MinP=3\) đạt được khi \(x=y=z=\frac{1}{3}\)
\(P=\dfrac{x+y}{\sqrt{xy+z}}+\dfrac{y+z}{\sqrt{yz+x}}+\dfrac{z+x}{\sqrt{xz+y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+\left(x+y+z\right)z}}+\dfrac{y+z}{\sqrt{yz+\left(x+y+z\right)x}}+\dfrac{x+z}{\sqrt{zx+\left(x+y+z\right)y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+xz+yz+z^2}}+\dfrac{y+z}{\sqrt{yz+x^2+xy+xz}}+\dfrac{x+z}{\sqrt{xz+xy+y^2+yz}}\)
\(P=\dfrac{x+y}{\sqrt{\left(x+z\right)\left(y+z\right)}}+\dfrac{y+z}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{x+z}{\sqrt{\left(x+y\right)\left(y+z\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}}}=3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}=3\)
\(\Rightarrow P\ge3\)
Vậy \(P_{min}=3\)
Dấu " = " xảy ra khi \(x=y=z=\dfrac{1}{3}\)
cái này bạn áp dụng hằng đẳng thức đáng nhớ số 1
(x-y)^2+(x^3-y^2)^2+6xy=36+(y^2-x^3)^2
(x^2 + y^2 - 2xy) + (x^6 + y^4 - 2x^3*y^2) + 6xy = 36 + (y^4 + x^6 - 2x^3*y^2) (Vì nó bằng nên lược bớt)
x^2 + y^2 - 2xy + 6xy = 36
x^2 + y^2 + 4xy = 36
x^2 + y^2 + 2xy + 2xy = 36
(x + y)^2 + 2xy = 36
3x+2y=5 => y = (5-3x)/2
E=xy = x(5-3x)/2
=> 2E=5x-3x2 = -3(x2-5x/3)
=> \(2E=-3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)\)
=> \(2E=\frac{25}{12}-3\left(x-\frac{5}{6}\right)^2\)
Nhận thấy: \(\left(x-\frac{5}{6}\right)^2\ge0\) Với mọi x
=> Giá trị lớn nhất của 2E là 25/12, đạt được khi x=5/6
=> \(E_{min}=\frac{25}{24}\) đạt được khi x=5/6
Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath
tham khảo nhé
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)
Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)
\(P_{max}=1019090\)