Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những đứa viết ''chtt'' là những đứa học dốt,lười suy nghĩ,chỉ biết ăn hôi bài người khác để kiếm tick
=>đó là những đứa nhục nhã,tham lam,lười biếng.
2.(x-5)-3.(x-4)=-6+15.-3
\(2\left(x-5\right)-3\left(x-4\right)=-51\)
\(\left(2x-10\right)-\left(3x-12\right)=-51\)
\(2x-10-3x+12=-51\)
\(\left(2x-3x\right)+\left(-10+12\right)=-51\)
\(-x+2=-51\)
\(-x=-53\)
\(x=53\)
vậy x=53
chúc bạn học tốt like mình nha
6x+42y⋮31
=> 6x+11y+31y⋮31
Vì 31y⋮31⇒6x+11y⋮31
Ta có
(6x+11y) =31(x+6y)-25(x+7y)
Do 6x+11y và 31(x+6y) đều chia hết cho 31
=> 25(x+7y) chia hết cho 31
Do (25,31)=1 (vì 25;31 là hai số nguyên tố cùng nhau)
Nên x+7y chia hết cho 31
Vậy ...
Ta biến đổi :
(6x+11y) =31(x+6y)-25(x+7y)
Do 6x+11y và 31(x+6y) chia hết cho 31
=> 25(x+7y) chia hết cho 31
Do (25,31)=1 (2 số nguyên tố cùng nhau)
=> x+7y chia hết cho 31
mình nhanh nhất mà , tick mình lên top 14 đi mn
6x+11y chia hết cho 31
=>6(6x+11y) chia hết cho 31
=>36x+66y chia hết cho 31
=>31x+31y+5x+35y chia hết cho 31
Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31
Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
Ta xét : P= \(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\)(2)
Từ (1)(2)=> x+7y chia hết cho 11(đpcm)
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
Ta có : 6(x+7y)-(6x+11y)=6x+42y-6x-11y=31y chia hết cho 31
Xét : 6x+11 chia hết cho 31 nên để 6(x+7y)-(6x+11y) thì 6(x+7y) chia hết cho 31
Mà (6;31)=1 ( 6 không chia hết cho 31) => x+7y chia hết cho 31
Vậy : x+7y chia hết cho 31
ĐÚNG 100% , MÌNH LÀM RỒI .TÍCH CHO MÌNH 5 TÍCH NHA !
vì 6x + 11y \(⋮\)31
\(\Rightarrow\)6x + 11y + 31y \(⋮\)31
\(\Rightarrow\)6x + 42y \(⋮\)31
\(\Rightarrow\)6x + 7y \(⋮\)31 mà ( 6 ; 31 ) = 1
\(\Rightarrow\)x + 7y \(⋮\)31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31