K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

\(\sqrt{x+2}\) +y3=\(\sqrt{y+2}\) +y3

\(\Rightarrow\) x=y

ta co :B=x2+2xy-2y2+2y+10 

\(\Leftrightarrow\)B=x2+2x2-2x2+2x+10

B=x2+2x+10

B=(x+1)2+9\(\ge\) 9 vì (x+1)2 \(\ge\)  0 vs \(\forall\) x

\(\Rightarrow\) minB=9 \(\Leftrightarrow\) x=y=-1

NV
25 tháng 12 2020

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

4 tháng 1 2021

đúng mà

NV
19 tháng 3 2019

Nếu bạn đã học phương trình đặc trưng thì khá dễ, chưa học thì chúng ta đành liên hợp:

ĐKXĐ: \(x;y\ge-2\)

\(\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+\left(x+y\right)^2+\frac{3y^2}{4}\right]=0\)

\(\Leftrightarrow x-y=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=y\)

Vậy \(A=x^2+2x^2-2x^2+2x+10=\left(x+1\right)^2+9\ge9\)

\(\Rightarrow A_{min}=9\) khi \(x=y=-1\)

19 tháng 3 2019

ok,cảm ơn bạn

30 tháng 4 2020

Ta có :

\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)

không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)

Khi đó : A = x - y + y - z + x - z = 2x - 2z

vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)

\(\Rightarrow A\le6\)

Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các  hoán vị

21 tháng 11 2018

ĐK: x, y>=-2

\(pt\Leftrightarrow\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+x^2+xy+y^2\right)=0\)

\(\Leftrightarrow x=y\)

Thay vào T=\(x^2+2x^2-2x^2+2x+10=x^2+2x+1+9=\left(x+1\right)^2+9\ge9\)

"=" xảy ra khi và chỉ khi x=y=-1 (thỏa mãn)

Vậy min T=9 khi x=y=-1

19 tháng 11 2018

Từ giả thiết chuyển vế liên hợp suy ra x=y

Thế xuống dưới là đc thôi

19 tháng 11 2018

trả lời thật vl

7 tháng 3 2019

\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)

nếu x>y =>vt>vp

nếu x<y => vt<vp

nếu x=y => VT=VP

=> x=y

ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)

=>M max=2016<=>x=y=1