K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Đặt \(\hept{\begin{cases}x=\frac{2}{a}\\y=\frac{1009}{b}\end{cases}}\)

\(\Rightarrow2018=xy=\frac{2}{a}.\frac{1009}{b}=\frac{2018}{ab}\)

\(\Rightarrow ab=1\)

\(\Rightarrow a+b\ge2\)

Ta lại có:

\(P=a+b-\frac{2028}{\frac{4036}{a}+\frac{4036}{b}}\)

\(a+b-\frac{2028ab}{4036\left(a+b\right)}\ge2-\frac{2028}{4036.2}=\frac{3529}{2018}\)

Dấu = xảy ra khi \(a=b=1\) hoặc \(\hept{\begin{cases}x=2\\y=1009\end{cases}}\)

16 tháng 6 2019

Cách của mình dài ,bạn nào có cách khác ngắn gọn hơn thì chỉ cho mình với ạ. Cảm ơn

Trước hết ta chứng minh  BĐT phụ sau: \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}.\)(*)

Thật vậy: \(ax+by\le\sqrt{\left(ax+by\right)^2}\le\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\)(BĐT bunhiacopxi)

\(\Leftrightarrow a^2+b^2+x^2+y^2+2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge a^2+b^2+x^2+y^2+2\left(ax+by\right)\)

\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)

\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\). BĐT đã được chứng minh

Xét : \(\left(x+\sqrt{1+x^2}\right)\left(x-\sqrt{1+x^2}\right)=x^2-\left(1+x^2\right)=-1.\)

Theo giả thết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)

\(\Rightarrow2018\left(x-\sqrt{1+x^2}\right)=-\left(y+\sqrt{1+y^2}\right).\)

\(\Leftrightarrow2018x+y=2018\sqrt{1+x^2}-\sqrt{1+y^2}.\)(1)

Tương tự:

Xét:\(\left(y+\sqrt{1+y^2}\right)\left(y-\sqrt{1+y^2}\right)=y^2-\left(1+y^2\right)=-1\)

Theo giả thiết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)

\(\Rightarrow2018\left(y-\sqrt{1+y^2}\right)=-\left(x+\sqrt{1+x^2}\right)\)

\(\Leftrightarrow x+2018y=-\sqrt{1+x^2}+2018\sqrt{1+y^2}\)(2)

Cộng các vế của (1) và (2) lại ta được

\(2019\left(x+y\right)=2017\left(\sqrt{1+x^2}+\sqrt{1+y^2}\right)\)

Khi đó áp dụng bất đẳng thức (*) ta có;

\(2019\left(x+y\right)=2017\left(\sqrt{1^2+x^2}+\sqrt{1^2+y^2}\right)\ge2017\left(\sqrt{\left(1+1\right)^2+\left(x+y\right)^2}\right)\)

\(\Rightarrow2019\left(x+y\right)\ge2017\sqrt{4+\left(x+y\right)^2}\)

Đặt \(x+y=a>0\)ta có;

\(2019a\ge2017\sqrt{4+a^2}\Leftrightarrow2019^2a^2\ge2017^2a^2+2017^2.4\)

\(\Leftrightarrow\left(2019^2-2017^2\right)a^2\ge\left(2017.2\right)^2\Leftrightarrow a^2\ge\frac{2017^2.2.2}{2.4036}\Leftrightarrow a^2\ge\frac{2017^2}{2018}\)

\(\Rightarrow a\ge\frac{2017}{\sqrt{2018}}\Rightarrow x+y\ge\frac{2017}{\sqrt{2018}}.\)

Vậy giá trị nhỏ nhất của biểu thức P=x+y là \(\frac{2017}{\sqrt{2018}}\)

Dấu '=' xảy ra khi \(x=y=\frac{2017}{2\sqrt{2018}}.\)

16 tháng 6 2019

bn đào thu hà k cần cm bdt phụ đâu đấy là bdt mincopski đc dùng luôn

25 tháng 5 2019

Công thức trên ghi sai, Công thức đúng như dưới đây:

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

26 tháng 5 2019

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}.1+\sqrt{y\left(2y+x\right)}.1}\)

\(S\ge\frac{x+y}{\frac{3x+y}{2}+\frac{3y+x}{2}}=\frac{2\left(x+y\right)}{4\left(x+y\right)}=\frac{1}{2}\)(BĐT cosi)

Vậy Min = 1/2 <=> x = y

25 tháng 5 2019

Nhờ giải giúp, công thức trên ghi sai, công thức đúng như dưới đây

S = \(\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

28 tháng 2 2022

trùi s ghim lên đay cx k ai giải v trùi