Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Lời giải:
$3x^2+x=4y^2+y$
$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$
$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$
$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$
Gọi $d=(x-y, 4x+4y+1)$
Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.
Từ $(1); (3)\Rightarrow y\vdots d$
Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$
$\Rightarrow d=1$
Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.
Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.
Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$
$=(x+y)^2t^2=[t(x+y)]^2$ là scp
Ta có đpcm.
pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)
\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)
\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)
\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)
Dấu "=" tự xét nhé
Có: 3x + y = 3 => y = 3x - 3
a) M = 3x2 + y2 = 3x2 + ( 3x - 3)2 = 3x2 + 9x2 - 18x + 9 = 3(4x2 - 6x + 3) = 3(4x2 - 6x +9/4) + 9/4 = 3(2x - 3/2)2 + 9/4 \(\ge\)9/4
Vậy min M là 9/4
b) N = 2xy = 2x(3x - 3) = 6x2 - 6x = 6(x2 - x + 1/4 - 1/4) = 6(x - 1/2)2 - 3/2 \(\le\)-3/2
Vậy max N là -3/2
Ta có 3x2+y2+2xy+4=7x+3y
<=> (x2 + 2xy + y2 ) - 3(x + y) + 2(x2 - 2x +1) + 2 = 0
<=> P2 - 3P + 9/4 + 2(x - 1)2 - 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2 - 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
chúc cậu hok tốt @_@