K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

\(\left\{{}\begin{matrix}x+y=2m-1\left(1\right)\\x^2+y^2=m^2+2m-3\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(x+y\right)^2-2xy=m^2+2m-3\)

\(\Leftrightarrow\left(2m-1\right)^2-m^2-2m+3=2xy\)

\(\Leftrightarrow2xy=3m^2-6m+4\)

\(P_{min}\Leftrightarrow3m^2-6m+4\left(min\right)\)

\(3\left(m^2-2m+\dfrac{4}{3}\right)=3\left(m^2-2m+1+\dfrac{1}{3}\right)=3\left[\left(m-1\right)^2+\dfrac{1}{3}\right]=3\left(m-1\right)^2+1\ge1\)

\("="\Leftrightarrow m=1\)

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ

25 tháng 1 2021

- Từ PT ( II ) ta có : \(xy\left(x+y\right)=2xy=4m^2-2m\)

\(\Rightarrow xy=2m^2-m\)

- Hệ PT trên có nghiệm là nghiệm của PT :

\(x^2-2x+2m^2-m=0\) ( I )

Có : \(\Delta^,=b^{,2}-ac=1-\left(2m^2-m\right)=-2m^2+m-1\)

- Để PT ( i ) có nghiệm \(\Leftrightarrow\Delta^,>0\)

\(\Leftrightarrow-2m^2+m-1>0\)

Vậy không tồn tại m để hệ phương trình có nghiệm .

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Phương trình (i) có nghiệm $\Leftrightarrow \Delta\geq 0$ chứ không phải $>0$ bạn nhé. 

24 tháng 8 2021

nhân 2vao pt (1) rồi cộng với pt 2 ta có:

x^2+y^2+2xy+5(x+y)=6+m

=(x+y)^2+5(x+y)=6+m

=t^2+5t=6+m

=t^2+5t-6-m

pt co nghiem duy nhat khi delta=0

tự giải =)))))))))))))))))))))))))))))))))

AH
Akai Haruma
Giáo viên
3 tháng 11 2017

Lời giải:

\(\left\{\begin{matrix} x+xy+y=2m+1\\ xy(x+y)=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} xy=2m+1-(x+y)\\ xy(x+y)=m^2+m\end{matrix}\right.\Rightarrow [2m+1-(x+y)](x+y)=m^2+m\)

Đặt \(x+y=t\Rightarrow t^2-t(2m+1)+m^2+m=0\)

Để pt có bộ nghiệm (x,y) duy nhất thì $t$ phải là duy nhất. Do đó:

\(\Delta=(2m+1)^2-4(m^2+m)=0\Leftrightarrow 1=0\)

(vô lý)

Do đó không tồn tại m để hệ có bộ nghiệm duy nhất.

6 tháng 11 2017

Dạng này làm như sau:

Đặt \(\left\{{}\begin{matrix}x+y=S\\xy=P\end{matrix}\right.\)

Sau đó biến đổi về phương trình bậc 2 theo ẩn S

Để hệ ban đầu có nghiệm duy nhất thì trước hết phương trình theo ẩn S có nghiệm duy nhất hoặc có 2 nghiệm trong đó có 1 nghiệm không thuộc tập xác định của hệ phương trình theo ẩn S, P. Đây mới chỉ là điều kiện cần.

Sau đó thế các nghiệm của S, P vào hệ rồi giải ra xem thử có nghiệm x, y hay không. Đây là điều kiện đủ. Xong 2 cái này thì mới kết luận là hệ có nghiệm duy nhất với m = ????

NV
16 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\y\ge-3\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y+3}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=m\\a^2-2+b^2-3=2m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=m\\a^2+b^2=2m\end{matrix}\right.\)

\(\Leftrightarrow a^2+\left(m-a\right)^2=2m\)

\(\Leftrightarrow2a^2-2m.a+m^2-2m=0\) (1)

Hệ đã cho có nghiệm khi và chỉ khi (1) có 2 nghiệm không âm

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-2\left(m^2-2m\right)\ge0\\a_1+a_2=m\ge0\\a_1a_2=\dfrac{m^2-2m}{2}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le4\\m\ge0\\\left[{}\begin{matrix}m\ge2\\m\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\2\le m\le4\end{matrix}\right.\)

NV
6 tháng 2 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)

\(\Leftrightarrow m=\pm1\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)

NV
6 tháng 2 2021

d.

Hệ có nghiệm duy nhất khi:

TH1:

 \(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)

TH2:

\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow m=1\) (ktm)

Vậy \(m=1\)

e.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

NV
21 tháng 2 2021

Xét \(-x^2+2x+3\le0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\)

Xét \(x+2m-1>0\Leftrightarrow x>-2m+1\)

Hệ đã cho có nghiệm với mọi m (đều chứa khoảng dương vô cùng)