K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)

\(\sqrt{y-2014}=b\left(b>0\right)\)

\(\sqrt{z-2015}=c\left(c>0\right)\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)

<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)

<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)

<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).

\(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)

\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)

\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)

=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)

Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)

1 tháng 9 2019

ko bt

NV
13 tháng 6 2020

c/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

13 tháng 6 2020

aaa là \(\sqrt{x+3}\) cháu gõ lộn

24 tháng 10 2019

Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)

\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)

\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)

Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được

\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)

Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)

Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)

23 tháng 10 2017

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)

\(\Rightarrow ab+bc+ca=2014\)

Ta có: \(\sqrt{x^2-2014}=a\)

\(\Leftrightarrow x^2-2014=a^2\)

\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

Tương tự, ta có:

\(y^2=\left(b+c\right)\left(b+a\right)\)

\(z^2=\left(c+a\right)\left(c+b\right)\)

Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=2\left(ab+bc+ac\right)=4028\)

23 tháng 10 2017

Châu

ù má =__= dấu bằng thứ hai dưới đếm lên sai ròi :"v cái phân số là

\(\dfrac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

ms đúng TT.TT nhưng kết quả vẫn dzậy thoy ^.^

8 tháng 4 2021

a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)

\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)

\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).

Dấu bằng xảy ra\(\Leftrightarrow x=y\).

Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).

8 tháng 4 2021

Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)

Lúc đó:

\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)

\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)

Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)

Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)

\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)

\(\Leftrightarrow A=B\)

Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)

Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)

\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow x=y\)

Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:

\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)

Chứng minh tương tự, ta được:

\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)

Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)

\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)

Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)

\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)

\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)

Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).

31 tháng 12 2021

Đề sai à? check lại đề đi

ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)

Ta có:

\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)

\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)

\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)

\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)

\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)

\(=\left|-1+45\right|=\left|44\right|=44\)

Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)

\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)

\(\Leftrightarrow1\le x-2013\le2025\)

\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)