Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt : \(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)(dấu "=" xảy ra ⇔ a=b)
⇒ P= \(\dfrac{1}{x+1}\)+ \(\dfrac{1}{y+2}\) ≥ \(\dfrac{4}{x+1+y+2}\) = \(\dfrac{4}{3+3}\) = \(\dfrac{2}{3}\)
Vậy Pmin=\(\dfrac{3}{2}\) ; dấu '=" xảy ra ⇔ \(\left\{{}\begin{matrix}x+1=y+2\\x+y=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
https://olm.vn/hoi-dap/detail/227981379332.html
Bạn tham khảo ở đây nhé.
Trừ vế cho vế:
\(\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\mx+y=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m-1\\y=m+1-mx\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=m-1\\y=-m^2+2m+1\end{matrix}\right.\)
\(\Rightarrow2x+y=2\left(m-1\right)-m^2+2m+1=-\left(m-2\right)^2+3\le3\) (đpcm)
Bài 2/ Không mất tính tổng quát giả sử: \(xy\ge0\)
\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\le\left(x+y\right)^2+z^2=2z^2\le2\)
Câu 3/
Dễ thấy n = 20 thì \(20^{20}\) có số lượng số lớn hơn 19 chữ số.
\(\Rightarrow n< 20\)
Xét \(n>2\) ta dễ thấy n phải là lũy thừa của 2 vì giải sử
\(n=\left(2k+1\right).2^a\)
\(\Rightarrow P=\left(n^{2a}\right)^{2a+1}+1=A.\left(n^{2a}+1\right)\)không phải là số nguyên tố.
\(\Rightarrow n=4;8;16\)
Xét \(n=1;2\) nữa là xong
PS: Thôi nghỉ không làm nữa
\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)
Đặt \(\dfrac{x}{y}=t\)
\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)
Với \(P=0\Leftrightarrow t=2\)
Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)
\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)
Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)
\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)