Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x3+y3+2xy=(x+y)(x2−xy+y2)+2xyA=x3+y3+2xy=(x+y)(x2−xy+y2)+2xy
Thay x+y=2x+y=2(giả thiết), suy ra:
A=2(x2−xy+y2)+2xy2(x2−xy+y2)+2xy=2(x2+y2)=2(x2+y2)
Sử dụng điều kiện x+y=2x+y=2như vậy: (x+y)2=4⇔x2+2xy+y2=4(x+y)2=4⇔x2+2xy+y2=4(1)(1)
Mà (x−y)2≥0⇔x2−2xy+y2≥0(x−y)2≥0⇔x2−2xy+y2≥0(2)(2)
Cộng (1) và (2), ta có: 2(x2+y2)≥42(x2+y2)≥4
Vậy Amin = 4 ⇔x2+y2=2⇔x=y=1
\(x-y=1\Leftrightarrow x=1+y\\ P=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\\ P=x^2+xy+y^2-xy\\ P=x^2+y^2=y^2+2y+1+y^2\\ P=2\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow y=-\dfrac{1}{2}\Leftrightarrow x=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910