K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2020

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)

\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
14 tháng 1 2021

\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)

 

NV
8 tháng 7 2021

Bài này hôm trước hình như bạn mới hỏi xong, vậy làm chi tiết cho đỡ băn khoăn:

Với các số dương a;b;c;x;y;z bất kì, ta chứng minh BĐT sau:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, BĐT tương đương:

\(a^2+b^2+x^2+y^2+2\sqrt{a^2b^2+x^2y^2+x^2b^2+a^2y^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Từ đó suy ra:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)

Áp dụng cho bài toán:

\(VT=\sqrt{\left(x+\dfrac{y}{2}\right)^2+\left(\dfrac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\dfrac{z}{2}\right)^2+\left(\dfrac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\dfrac{x}{2}\right)^2+\left(\dfrac{\sqrt{3}x}{2}\right)^2}\)

\(VT\ge\sqrt{\left(x+\dfrac{y}{2}+y+\dfrac{z}{2}+z+\dfrac{x}{2}\right)^2+\left(\dfrac{\sqrt{3}y}{2}+\dfrac{\sqrt{3}z}{2}+\dfrac{\sqrt{3}x}{2}\right)^2}=2\left(x+y+z\right)\) (đpcm)

NV
14 tháng 5 2020

Dạo này ko tag được đâu :(

\(VT=\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{1}{2}\left(x^2+y^2\right)+y^2}\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{1}{4}\left(x+y\right)^2+y^2}\)

\(VT\ge\sum\sqrt{\frac{3}{4}\left(x+y\right)^2+y^2}\ge\sqrt{\frac{3}{4}\left(2x+2y+2z\right)^2+\left(x+y+z\right)^2}\)

(Mincopxki)

\(\Rightarrow VT\ge\sqrt{4\left(x+y+z\right)^2}=2\left(x+y+z\right)\)

14 tháng 5 2020

@Nguyễn Việt Lâm

NV
23 tháng 10 2020

BĐT tương đương:

\(\frac{1}{z\left(1+\frac{1}{x}\right)}+\frac{1}{x\left(1+\frac{1}{y}\right)}+\frac{1}{y\left(1+\frac{1}{z}\right)}\ge2\)

Từ giả thiết:

\(xy+yz+zx+2xyz=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2=\frac{1}{xyz}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a+b+c+2=abc\)

\(\Rightarrow a+b+c+2\le\frac{1}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\left(a+b+c\right)^3-27\left(a+b+c\right)-54\ge0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(a+b+c+3\right)^2\ge0\)

\(\Leftrightarrow a+b+c\ge6\)

BĐT trở thành: \(\frac{c}{1+a}+\frac{a}{1+b}+\frac{b}{1+c}\ge2\)

Thật vậy, ta có:

\(VT=\frac{a^2}{a+ab}+\frac{b^2}{b+bc}+\frac{c^2}{c+ca}\ge\frac{\left(a+b+c\right)^2}{a+b+c+ab+bc+ca}\ge\frac{3\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(VT\ge\frac{3\left(a+b+c\right)}{3+a+b+c}=\frac{2\left(a+b+c\right)+a+b+c}{a+b+c+3}\ge\frac{2\left(a+b+c\right)+6}{a+b+c+3}=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)