Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy\left(y-7\right)+7y\left(1+x\right)\)
\(=xy^2-7xy+7y+7xy=xy^2+7y\)
Thay vào ta được:
\(=\left(-6\right).1^2+7.1=\left(-6\right)+7=1\)
b) \(xy-7x+y-7\)
\(=xy+y-7x-7=y\left(x+1\right)-7\left(x+1\right)=\left(y-7\right)\left(x+1\right)\)
Thay vào ta được:
\(=\left(10-7\right)\left(9+1\right)=3.10=30\)
c) \(xy\left(y-2\right)+2x\left(1+x\right)\)
Thay vào ta được:
\(\left(-1\right).2\left(2-2\right)+2\left(-1\right)[1+\left(-1\right)]=0+0=0\)
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2+y^2-2xy+1+2x-2y\right)+36\)
\(A=\left(x-y+1\right)^2+36\)
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=100\)
\(B=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\) \((9^5\) \(sai\)\()\)
\(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-95\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-95\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(B=7^3+7^2-95\)
\(B=297\)
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
1,x+y=9;xy=14
a)
Ta có:\(x+y=9\)
=>\(\left(x-y\right)^2+4xy=81\)
=>\(\left(x-y\right)^2=81-4xy=81-4.14=25\)
=>\(x-y=-5\)hoặc \(x-y=5\)
Vậy..
b)Ta có:\(x+y=9\)
=>\(x^2+y^2=81-2xy=81-2.14=53\)
Vậy...
Bài2:
Ta có:
\(x+y+z=0\)
=>\(x^2+y^2+z^2+2xy+2xz+2yz=0\)
=>\(x^2+y^2+z^2=0\)
Với mọi x;y;z thì \(x^2\)>=0;\(y^2\)>=0;\(z^2\)>=0
=>\(x^2+y^2+z^2\)>=0
Để \(x^2+y^2+z^2=0\)thì
\(x^2=0\);\(y^2=0\);\(z^2=0\)
=>\(x=y=z=0\left(đpcm\right)\)
a: \(A=y^2-8y-x\left(8-y\right)\)
\(=y\left(y-8\right)+x\left(y-8\right)\)
\(=\left(y-8\right)\left(x+y\right)\)
\(=100\cdot100=10000\)
a) \(2011.2013+2012.2014\)
\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)
\(=2012^2-1+2013^2-1\)
\(=2012^2+2013^2-2\)
\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)
b) \(\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9+1\right)\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^4-1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^8-1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{16}-1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{32}-1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{64}-1\right)\)
\(=\dfrac{9^{64}-1}{10}\)
Ta có: \(9^{64}-1=\dfrac{10\left(9^{64}-1\right)}{10}\)
Mà \(\dfrac{10\left(9^{64}-1\right)}{10}>\dfrac{9^{64}-1}{10}\)
\(\Rightarrow\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)< 9^{64}-1\)
c) Ta có:
\(\dfrac{x^2-y^2}{x^2+xy+y^2}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-xy}\left(1\right)\)
Vì x>y>0, ta có:
\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)
Vì x>y>0 nên \(\left(x+y\right)^2-xy< \left(x+y\right)^2\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+xy+y^2}\)
a) Ta có:
\(2011.2013+2012.2014\)
\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)
\(=2012^2-1+2013^2-1\)
\(=2012^2+2013^2-2\)
Vậy 2011.2013+2012.2014 = 20122 + 20132 - 2
Lời giải:
Ta có:
\(A=\frac{x^2+y^2}{x-y}=\frac{(x^2-2xy+y^2)+2xy}{x-y}\)
\(=\frac{(x-y)^2+2xy}{x-y}=\frac{(x-y)^2+2}{x-y}\) (do \(xy=1\) )
\(=x-y+\frac{2}{x-y}\)
Áp dụng BĐT Cauchy cho 2 số \(x-y, \frac{2}{x-y}\) dương ta có:
\(A=(x-y)+\frac{2}{x-y}\geq 2\sqrt{(x-y).\frac{2}{x-y}}=2\sqrt{2}\)
Vậy \(A_{\min}=2\sqrt{2}\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=\sqrt{2}\\ xy=1\end{matrix}\right.\) \(\Leftrightarrow (x,y)=\left(\frac{\sqrt{6}+\sqrt{2}}{2}; \frac{\sqrt{6}-\sqrt{2}}{2}\right)\)
a, Ta có :
\(N=x^2\left(y-1\right)-5x\left(1-y\right)=x^2\left(y-1\right)+5x\left(y-1\right)=x\left(x+5\right)\left(y-1\right)\)
Thay x = -20 ; y = 1001 ta được :
\(-20\left(-20+5\right)\left(1001-1\right)=-20.\left(-15\right).1000=300000\)
b, Ta có : \(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y=\left(x-y\right)^3+xy\left(x-y\right)\)
\(=\left(x-y\right)^4\left(1+xy\right)\)
Thay x - y = 7 ; xy = 9 ta được :
\(7^4.\left(1+9\right)=2401.10=24010\)
N = x2( y - 1 ) - 5x( 1 - y )
= x2( y - 1 ) + 5x( y - 1 )
= x( y - 1 )( x + 5 )
Tại x = -20 ; y = 1001 ta được :
N = -20( 1001 - 1 )( -20 + 5 )
= -20.1000.(-15)
= 1000.300
= 300 000
Q = x( x - y )2 - y( x - y )2 + xy2 - x2y
= x( x - y )2 - y( x - y )2 - xy( x - y )
= ( x - y )[ x( x - y ) - y( x - y ) - xy ]
= ( x - y )( x2 - xy - xy + y2 - xy )
= ( x - y )( x2 - 3xy + y2 )
= ( x - y )[ ( x2 - 2xy + y2 ) + 2xy - 3xy ]
= ( x - y )[ ( x - y )2 - xy ]
= 7[ 72 - 9 ]
= 7( 49 - 9 )
= 7.40 = 280