K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0

<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0

<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z

Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )

Thay ( 1 ) vào A , ta được :

\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)

Vậy A = 2

8 tháng 10 2020

Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

24 tháng 10 2021

6258

25 tháng 10 2021

Sai rồi bạn

 

6 tháng 5 2018

    \(x+y+z=0\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2=0\)   (vì  xy + yz + xz = 0)

\(\Rightarrow\)\(x=y=z=0\)

Vậy   \(Q=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}=1\)

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 3 là sẽ tìm được nghiệm nguyên của 

24 tháng 3 2021
Chịu nha bạn
17 tháng 11 2019

Ta có: x^2+2y^2+z^2-2xy-2y-4z+5=0

<=> ( x^2 - 2xy + y^2 ) + ( y^2 - 2y +1 ) + ( z^2 - 4z + 4 ) = 0

<=> ( x - y )^2 + ( y - 1 )^2 + ( z - 2 )^2 = 0

=> x - y = 0 và y - 1 = 0 và z - 2 = 0

<=> x = y = 1 và z = 4

Nên P = 1

3 tháng 10 2021

\(x+y+z=9\Leftrightarrow\left(x+y+z\right)^2=81\\ \Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=81\\ \Leftrightarrow xy+yz+xz=\dfrac{81-27}{2}=27\\ \Leftrightarrow x^2+y^2+z^2=xy+yz+xz\\ \Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z=\dfrac{9}{3}=3\left(x+y+z=9\right)\)

\(\Leftrightarrow\left(x-4\right)^{2018}+\left(y-4\right)^{2019}+\left(z-4\right)^{2020}\\ =\left(-1\right)^{2018}+\left(-1\right)^{2019}+\left(-1\right)^{2020}=1-1+1=1\)

22 tháng 2 2021

link bài giải đây ạ => http://bblink.com/ghyht

19 tháng 12 2019

\(x^2+y^2=6\left(x-y-3\right)\)\(\Rightarrow x^2+y^2-6\left(x-y-3\right)=0\)

\(\Leftrightarrow x^2+y^2-6x+6y+18=0\)\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)(1)

Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

\(\Rightarrow M=3^{2019}+\left(-3\right)^{2019}+\left(3-3\right)^{2020}=0\)

19 tháng 12 2019

\(Ta \) \(có : \) \(x ^2 + y^2 = 6. ( x - y - 3 )\)

\(\Leftrightarrow\)\(x^2 + y^2 - 6. ( x - y - 3 ) = 0\)

\(\Leftrightarrow\)\(x^2 + y^2 - 6x + 6y + 18 = 0\)

\(\Leftrightarrow\)\(( x^2 - 6x + 9 ) + ( y^2 + 6y + 9 ) = 0\)

\(\Leftrightarrow\)\(( x - 3 )^2 + ( y + 3 )^2 = 0\)

\(\Leftrightarrow\)\(( x - 3 )^2 = 0 \) \(và \) \(( y - 3 )^2 = 0\)

\(\Leftrightarrow\)\(x - 3 = 0 \) \(và \) \(y + 3 = 0\)

\(\Leftrightarrow\)\(x = 3 \) \(và \) \(y = - 3\)

\(Thay\) \(x = 3 ; y = - 3 \) \(vào \) \(M \)\(ta \) \(được :\)

\(M = 3\)\(2019\) \(+ (- 3 )\)\(2019\) \(+ [ 3 + ( - 3 ) ]\)\(2020\)

\(M = 0 \)