K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{y+z}}{x}\geq \frac{(y+z)(x+\sqrt{yz})}{x}=y+z+\frac{\sqrt{yz}(y+z)}{x}\)

Hoàn toàn tương tự :

\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+z}}{y}\geq x+z+\frac{\sqrt{xz}(x+z)}{y}\)

\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+y}}{z}\geq x+y+\frac{\sqrt{xy}(x+y)}{z}\)

Cộng theo vế:

\(T\geq 2(x+y+z)+\underbrace{\frac{(x+y)\sqrt{xy}}{z}+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}}_{M}\)

Ta có:

\(M=\frac{(\sqrt{2}-z)\sqrt{xy}}{z}+\frac{(\sqrt{2}-x)\sqrt{yz}}{x}+\frac{(\sqrt{2}-y)\sqrt{xz}}{y}\)

\(=\sqrt{2}\left(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\right)-(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)

Áp dụng BĐT AM-GM:

\(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\geq 3\sqrt[3]{\frac{xyz}{xyz}}=3\)

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\leq \frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=\sqrt{2}\)

Do đó: \(M\geq 3\sqrt{2}-\sqrt{2}=2\sqrt{2}\)

\(\Rightarrow T\geq 2(x+y+z)+M\geq 2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)

Vậy \(T_{\min}=4\sqrt{2}\)

19 tháng 1 2018

*)\(x=0\Rightarrow y^2=1\Rightarrow P=0\)

*)\(y=0\Rightarrow x^2=1\Rightarrow P=2\)

*)\(x,y \ne 0\) chia cả tử và mẫu cho \(a=\dfrac{x}{y}\) ta được:

\(P=\dfrac{2\left(a^2+6a\right)}{a^2+2a+3}\)

\(\Leftrightarrow\left(P-2\right)a^2+2a\left(P-2\right)+3P=0\left(1\right)\)

\(\left(1\right)\) có nghiệm khi \(\Delta'=\left(P-6\right)^2-3P\left(P-2\right)\ge0\)

\(\Leftrightarrow-2\left(P-3\right)\left(P+6\right)\ge0\)\(\Leftrightarrow\left(P-3\right)\left(P+6\right)\le0\)

\(\Leftrightarrow-6\le P\le3\)

Hay \(Min=-6; Max=3\)

24 tháng 9 2017

Áp dụng BĐT bunyakovsky:

\(\sum\dfrac{x^2}{y+z}\ge\sum\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{matrix}\right.\) thì có a+b+c=2016 và cần tìm Min của \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}\) (\(x^2=\dfrac{a^2+c^2-b^2}{2}\))

Ta có: \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}=\dfrac{1}{2\sqrt{2}}.\left(\sum_{sym}\dfrac{a^2}{b}-\sum b\right)\)

Áp dụng BĐT cauchy-schwarz:

\(\sum_{sym}\dfrac{a^2}{b}=\dfrac{a^2}{b}+\dfrac{c^2}{b}+\dfrac{b^2}{a}+\dfrac{c^2}{a}+\dfrac{a^2}{c}+\dfrac{b^2}{c}\ge\dfrac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2\left(a+b+c\right)\)

DO đó \(VT\ge\dfrac{1}{2\sqrt{2}}\left(2\sum a-\sum a\right)=\dfrac{1}{2\sqrt{2}}\left(a+b+c\right)=\dfrac{2016}{2\sqrt{2}}=\dfrac{1008}{\sqrt{2}}\)

Dấu = xảy ra khi a=b=c hay \(x=y=z=\dfrac{672}{\sqrt{2}}\)

15 tháng 5 2018

\(P=\dfrac{\left(x+y\right)^3}{x^2y}\\ =\dfrac{x^3+3x^2y+3xy^2+y^3}{x^2y}\\ =\dfrac{x}{y}+3+\dfrac{3y}{x}+\dfrac{y^2}{x^2}\\ =\left(\dfrac{y^2}{x^2}+\dfrac{3y}{x}+\dfrac{x}{y}\right)+3\\ =\left(\dfrac{y^2}{x^2}+\dfrac{y}{2x}+\dfrac{y}{2x}+\dfrac{y}{2x}+\dfrac{y}{2x}+\dfrac{y}{2x}+\dfrac{y}{2x}+\dfrac{x}{8y}+\dfrac{x}{8y}+\dfrac{x}{8y}+\dfrac{x}{8y}+\dfrac{x}{8y}+\dfrac{x}{8y}+\dfrac{x}{8y}+\dfrac{x}{8y}\right)+3\\ \overset{Cauchy}{\ge}15\sqrt[15]{\dfrac{y^2}{x^2}\left(\dfrac{y}{2x}\right)^6\left(\dfrac{x}{8y}\right)^8}+3\\ =\dfrac{15}{4}+3\\ =\dfrac{27}{4}\)

Vậy \(MinP=\dfrac{27}{4}\Leftrightarrow x=2y\).

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:
Áp dụng BĐT Cô-si ta có:

\(2x+\frac{1}{2x}\geq 2\)

\(y+\frac{9}{y}\geq 6\)

\(\frac{7x}{3}+\frac{7y}{3}=\frac{7}{3}(x+y)=\frac{49}{6}\)

Cộng theo vế:

$P\geq 2+6+\frac{49}{6}=\frac{97}{6}$

Vậy $P_{\min}=\frac{97}{6}$ tại $x=\frac{1}{2}; y=3$

AH
Akai Haruma
Giáo viên
22 tháng 4 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(3=x^2+y^2+\frac{1}{xy}\geq 2xy+\frac{1}{xy}\)

Đặt \(xy=t\Rightarrow 3\geq 2t+\frac{1}{t}\)

\(\Leftrightarrow 3t\geq 2t^2+1\Leftrightarrow 2t^2-3t+1\leq 0\)

\(\Leftrightarrow (2t-1)(t-1)\leq 0\Rightarrow \frac{1}{2}\leq t\leq 1\)

Với \(t=xy\leq 1\) ta có bổ đề sau:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\leq \frac{2}{xy+1}(*)\)

Việc chứng minh bổ đề trên rất đơn giản. Thực hiện biến đổi tương đương và rút gọn ta thu được:

\((*)\Leftrightarrow (xy-1)(x-y)^2\leq 0\) (luôn đúng do \(xy\leq 1\) )

Áp dụng bổ đề trên vào bài toán đã cho:

\(P=2\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}\right)-\frac{3}{2xy+1}\leq \frac{4}{xy+1}-\frac{3}{2xy+1}\)

\(\Leftrightarrow P\leq \frac{4}{t+1}-\frac{3}{2t+1}\)

Ta sẽ chứng minh \(\frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)

\(\Leftrightarrow \frac{5t+1}{2t^2+3t+1}\leq \frac{7}{6}\)

\(\Leftrightarrow 30t+6\leq 14t^2+21t+7\)

\(\Leftrightarrow 14t^2-9t+1\geq 0\)

\(\Leftrightarrow (2t-1)(7t-1)\geq 0\)

BĐT trên luôn đúng do \(t\geq \frac{1}{2}\)

Như vậy: \(P\leq \frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)

Vậy \(P_{\max}=\frac{7}{6}\). Dấu bằng xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

22 tháng 4 2018

tks