Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
\(2A=2\sqrt{2x^2+5x+2}+4\sqrt{x+3}-4x\)
\(2A=2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)
\(\le2x+1+x+2+4+x+3-4x=10\)
=>2A\(\le10\Rightarrow A\le5\)
dấu bằng xảy ra \(\Leftrightarrow2x+1=x+2\)
và x+3=4
=>x=1
maxA=5 khi x=1
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky, với $x\geq \frac{-1}{2}$ ta có:
\((\sqrt{2x^2+5x+2}+2\sqrt{x+3})^2=(\sqrt{(2x+1)(x+2)}+2\sqrt{x+3})^2\)
\(\leq [(2x+1)+2^2][(x+2)+(x+3)]=(2x+5)^2\)
\(\Rightarrow \sqrt{2x^2+5x+2}+2\sqrt{x+3}\leq 2x+5\)
\(\Rightarrow A\leq 5\)
Vậy $A_{\max}=5$. Giá trị này đạt tại $x=1$
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
Áp dụng BĐT cosi:
\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)