Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
** Bạn lưu ý lần sau viết bài bằng công thức toán và viết đề cho chính xác để nhận được sự trợ giúp tốt hơn.
Viết lại đề:
Cho $a^2+b^2+c^2=1(1)$ và $a^5+b^5+c^5=1(2)$. Tính $a^{2020}+b^{2020}+c^{2020}$
------------------------------------------
Vì $a^2+b^2+c^2=1\Rightarrow -1\leq a,b,c\leq 1$
Từ $(1);(2)\Rightarrow a^2(a^3-1)+b^2(b^3-1)+c^2(c^3-1)=0$
Do $-1\leq a,b,c\leq 1$ nên $a^2(a^3-1)\leq 0; b^2(b^3-1)\leq 0; c^2(c^3-1)\leq 0$
Suy ra để tổng của chúng bằng $0$ thì $a^2(a^3-1)=b^2(b^3-1)=c^2(c^3-1)=0$
Kết hợp với $a^2+b^2+c^2=1$ suy ra $(a,b,c)=(1,0,0)$ và hoán vị
$\Rightarrow a^{2020}+b^{2020}+c^{2020}=1$
nhưng mà mình không ghi đc côn thức bằng máy , vì nó lag á!!!
nma cảm ơn b nhiều nhaaa