K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

2020.2019^5 = (2019+1).2019^5 = 2019^6+2019^5 làm tương tự với các x còn lại

A= 2019^6 - 2019^6 +.....-2019^2-2019 +2020 = 1 vậy A=1

30 tháng 4 2019

ta có x = 2019 \(\Rightarrow\)2020 = x+1  

thay 2020 = x+1 vào A ta có

\(A=x^6-\left(x+1\right).x^5+\left(x+1\right).x^4-...-\left(x+1\right).x+2020\)

\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2020\)

\(=-x+2020\)

\(=-2019+2020\)

\(=1\)

vậy A = 1

học tốt !!!

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Đề sai. Nếu $x,y$ đều âm thì điều kiện $xy> 2020x+2020y$ được thỏa mãn nhưng hiển nhiên $x+y$ không thể lớn hơn $(\sqrt{2020}+\sqrt{2021})^2$

20 tháng 9 2021

nếu x,y dương

 thì sao Akai Haruma ?

9 tháng 11 2021

TK: Câu hỏi của Hà Phương Linh - Toán lớp 9 - Học trực tuyến OLM

9 tháng 11 2021

em cảm ơn a

NV
22 tháng 10 2019

ĐKXĐ: ...

\(\Leftrightarrow x^2\left(\sqrt{x+3}-2\right)+2020\left(x-1\right)=0\)

\(\Leftrightarrow\frac{x^2\left(x-1\right)}{\sqrt{x+3}+2}+2020\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^2}{\sqrt{x+3}+2}+2020\right)=0\)

\(\Leftrightarrow x-1=0\Rightarrow x=1\)

NV
26 tháng 12 2020

ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)

\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

Do \(x>0\) nên hiển nhiên vế trái dương.

Pt vô nghiệm

26 tháng 12 2020

ĐKXĐ: x≥20202019>0x≥20202019>0

⇔√2020x−2019+√2019x−2020+2019(x+1)=0⇔2020x−2019+2019x−2020+2019(x+1)=0

⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0

Do x>0x>0 nên hiển nhiên vế trái dương.

Pt vô nghiệm

4 tháng 2 2020

Thay 2020=x+y+z vao mẫu đc

\(\frac{xy}{\sqrt{xy+zx+zy+z^2}}=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{2}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)(Cauchy)

Làm tương tự mấy cái kia sau đó ghép mấy cái cũng mẫu lại là ra

4 tháng 2 2020

bạn làm rõ ra đc k