Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=16x^2y^2+12\left(x^3+y^3\right)+9xy+25xy\)
\(=16x^2y^2+12\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+34xy\)
\(=16x^2y^2+12-36xy+34xy\)
\(=16x^2y^2-2xy+12\)
\(S=16x^2y^2-2xy+12=16x^2y^2-2xy+\frac{1}{16}+\frac{191}{16}=\left(4xy-\frac{1}{4}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)
\(\Rightarrow MinS=\frac{191}{16}\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4xy-\frac{1}{4}=0\\x,y\ge0\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(\frac{2\pm\sqrt{3}}{4};\frac{2\mp\sqrt{3}}{4}\right)\)
\(S=16x^2y^2-2xy+12=2xy\left(8xy-1\right)+12\le2.\frac{\left(x+y\right)^2}{4}\left[8.\frac{\left(x+y\right)^2}{4}-1\right]+12=\frac{25}{2}\)
\(\Rightarrow MinS=\frac{25}{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x=y\\x,y\ge0\end{matrix}\right.\Leftrightarrow x=y=\frac{1}{2}\)
\(A=4ab+8bc+6ca=a\left(b+c\right)+3b\left(a+c\right)+5c\left(a+b\right)\)
\(=a\left(3-a\right)+3b\left(3-b\right)+5c\left(3-c\right)\)
\(=\dfrac{81}{4}-\left[\left(a-\dfrac{3}{2}\right)^2+3\left(b-\dfrac{3}{2}\right)^2+5\left(c-\dfrac{3}{2}\right)^2\right]\)
Đặt \(x=\left|a-\dfrac{3}{2}\right|;y=\left|b-\dfrac{3}{2}\right|;z=\left|c-\dfrac{3}{2}\right|\)
\(\Rightarrow x+y+z\ge\left|a+b+c-\dfrac{9}{2}\right|=\dfrac{3}{2}\)
Khi đó \(A=\dfrac{81}{4}-\left(x^2+3y^2+5z^2\right)\)
Áp dụng bđt bunhiacopxki: \(\left(x^2+3y^2+5z^2\right)\left(\dfrac{45^2}{46^2}+\dfrac{3.15^2}{46^2}+\dfrac{5.9^2}{46^2}\right)\ge\left(\dfrac{45}{46}x+\dfrac{45}{46}y+\dfrac{45}{46}z\right)^2\ge\left(\dfrac{135}{92}\right)^2\)
\(\Leftrightarrow x^2+3y^2+5z^2\ge\dfrac{135}{92}\)
\(\Rightarrow A\le\dfrac{81}{4}-\dfrac{135}{92}=\dfrac{432}{23}\)
Dấu = xảy ra\(\Leftrightarrow x=3y=5z\) và \(x+y+z=\dfrac{3}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{45}{46}\\y=\dfrac{15}{46}\\z=\dfrac{9}{46}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{12}{23}\\b=\dfrac{27}{23}\\c=\dfrac{30}{23}\end{matrix}\right.\)
Vậy...
2A = 2x (12 - 2x)
Áp dụng bất đẳng thức cosi
2x (12 - 2x) ≤ \(\dfrac{\left(2x+12-2x\right)^2}{4}\)
⇔ 2A ≤ 36
⇔ A ≤ 18
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}0\le x\le6\\2x=12-2x\end{matrix}\right.\)⇔ x = 3
Vậy Amax = 18 khi x = 3
\(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)=25\\\Rightarrow\left|3x+4y\right|\le5\)