Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 0
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0
<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0
<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0
<=> x - y = 0 và y - z = 0 và z - x = 0
<=> x = y và y = z và z = x
<=> x = y = z
\(x^2+y^2+z^2=xy+yz+zx\)
=> \(2x^2+2y^2+2x^2=2xy+2yz+2zx\)
=> \(2x^2+2y^2+2x^2-2xy-2yz-2zx=0\)
=> \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
=> x -y =0 ; y - z=0 ; z - x=0
=> x =y; y =z; z=x
=> x=y=z
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(\Leftrightarrow2x^2-2xy+2y^2-2yz+2z^2-2xz=4\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=4\left(x^2+y^2-xy-xz-yz\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Leftrightarrow x=y=z\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4.\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(< =>2x^2-2xy+2y^2-2yz+2z^2-2xz=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(< =>2.\left(x^2+y^2+x^2-xy-xz-zy\right)=4.\left(x^2+y^2+z^2-xy-xz-zy\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(< =>\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\)
\(< =>\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}< =>x=y=z}\)
Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Leftrightarrow x=y=z\)
x2+y2+z2=xy+yz+zx
<=>2(x2+y2+z2)=2(xy+yz+zx)
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0
<=>(x-y)2+(y-z)2+(z-x)2=0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow x=y=z}\)(đpcm)
\(4\left(x^2+y^2+z^2-xy-yz-zx\right)=2\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Tuwf ddos suy ra x-y=y-z=z-x=0