K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{1}{3}x=-2t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{x}{-2}=\dfrac{t}{\dfrac{1}{3}}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}=\dfrac{x+y+z-2t}{2+3+4-2\cdot\dfrac{-1}{3}}=\dfrac{4}{\dfrac{29}{3}}=\dfrac{12}{29}\)

Do đó: x=24/29; y=36/29; z=48/29; t=-4/29

\(\dfrac{x}{2}+\dfrac{y}{3}-z+t=\dfrac{12}{29}+\dfrac{12}{29}-\dfrac{48}{29}+\dfrac{-4}{29}=-\dfrac{28}{29}\)

Đề bài yêu cầu gì?

17 tháng 11 2017

\(\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\)

\(\dfrac{x}{z}=\dfrac{4}{3}\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)

\(\Rightarrow\left\{{}\begin{matrix}x=50.4\\y=50.6\\z=50.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=200\\y=300\\z=150\end{matrix}\right.\)

17 tháng 11 2017

a) Theo đề bài ta có:

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\)\(x-y+z=50\)

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)

\(\dfrac{x}{4}=50\Rightarrow x=50.4=200\)

\(\dfrac{y}{6}=50\Rightarrow y=50.6=300\)

\(\dfrac{z}{3}=50\Rightarrow z=50.3=150\)

Vậy \(x=200,y=300,z=150\)