Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\hept{\begin{cases}2\left(x+y\right)=z^2\Rightarrow2\left(x+y+z\right)+1=z^2+2z+1=\left(z+1\right)^2\\2\left(y+z\right)=x^2\Rightarrow2\left(y+z+x\right)+1=x^2+2x+1=\left(x+1\right)^2\\2\left(z+x\right)=y^2\Rightarrow2\left(z+x+y\right)+1=y^2+2y+1=\left(y+1\right)^2\end{cases}}\) mà x,y,z không âm.
\(\Rightarrow x=y=z\) .
Thay vào 3 phương trình trên ta có : \(\orbr{\begin{cases}x=y=z=0\\x=y=z=4\end{cases}}\)
Vậy........
\(0\le x,y,z\le2\Leftrightarrow xyz+\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)
\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow xy+yz+xz\ge2\)
xét \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+xz\right)=9-2\left(xy+yz+xz\right)\le9-2.2=5\)
Dấu = xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\)và các hoán vị
\(Taco:\)
\(\left(x+y\right)\left(y+z\right)=187\Leftrightarrow xy+xz+yy+yz=187\)
\(\left(y+z\right)\left(z+x\right)=154\Leftrightarrow yz+xy+zz+xz=154\)
\(\left(z+x\right)\left(x+y\right)=238\Leftrightarrow xz+zy+xx+xy=238\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)+\left(x+z\right)\left(x+y\right)+\left(y+z\right)\left(z+x\right)=579\)
\(\Leftrightarrow xy+zx+yy+yz+yz+xy+zz+xz+xz+zy+xx+xy=579\)
\(\Leftrightarrow3\left(xz+xy+yz\right)+x^2+y^2+z^2=579\)
\(\left(z+x\right)\left(x+y\right)-\left(x+y\right)\left(y+z\right)=51\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x^2-y^2=51\)
\(\left(z+x\right)\left(x+y\right)-\left(y+z\right)\left(x+z\right)=84\)
\(\Leftrightarrow\left(x+z\right)\left(x-z\right)=84\Leftrightarrow x^2-z^2=84\)
\(\Leftrightarrow y^2-z^2=33\)
đến đây tịt
bé hơn hoặc bằng 11 nha bn
bn làm ko đc thì đừng ns
thầy mik làm đc ra rồi
nhưng bắt mik làm lại thôi bn à